Purpose: Mechanisms of primary resistance to inhibitors of the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) signaling axis in non-small cell lung cancer (NSCLC) are still poorly understood. While some studies suggest the involvement of trophoblast cell surface antigen 2 (TROP2) in modulating tumor cell resistance to therapeutic drugs, its specific role in the context of PD-1/PD-L1 axis blockade is not definitively established.
Experimental Design: We performed high-throughput analysis of transcriptomic data from 891 NSCLC tumors from patients treated with either the PD-L1 inhibitor atezolizumab or chemotherapy in two large randomized clinical trials.
Introduction: Integrating telemedicine into cancer care remains a major challenge. There are little clinical evidence for teleconsultation efficacy and safety in daily oncology practice. This study as a pioneering experience, aimed to analyze patient and physician opinions regarding the implementation of telemedicine consultations, and to identify major limitations of telehealth spread in an oncology institute.
View Article and Find Full Text PDFPurpose: Overexpression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) has been reported in several tumor types, including non-small cell lung cancer (NSCLC), and has been shown to promote tumor-immune evasion and inhibit T-cell activation through increased tryptophan degradation and the production of several immunosuppressive metabolites collectively known as kynurenines. However, it remains unclear whether IDO1 expression by tumor cells is detrimental specifically in the context of programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) axis blockade.
Experimental Design: We analyzed the transcriptome of 891 NSCLC tumor samples from patients enrolled in two large randomized clinical trials investigating the safety and activity of atezolizumab, a humanized IgG1 mAb that targets PD-L1, versus docetaxel in patients with advanced NSCLC.
Background: The discovery of immune checkpoint inhibitors (ICIs) has revolutionized the systemic approach to cancer treatment. Most patients receiving ICIs, however, do not derive benefits. Therefore, it is crucial to identify reliable predictive biomarkers of response to ICIs.
View Article and Find Full Text PDF