Publications by authors named "F Chandler Wentz"

Background: Participation in regular physical activity (PA) is a critical component of overall well-being. However, opportunities to engage in health-enhancing PA for families who have an autistic child are relatively obsolete. A virtual PA intervention has the potential to address many participation barriers and represents a timely opportunity to promote positive trajectories of PA among vulnerable populations.

View Article and Find Full Text PDF

We provide scientific evidence that a human-caused signal in the seasonal cycle of tropospheric temperature has emerged from the background noise of natural variability. Satellite data and the anthropogenic "fingerprint" predicted by climate models show common large-scale changes in geographical patterns of seasonal cycle amplitude. These common features include increases in amplitude at mid-latitudes in both hemispheres, amplitude decreases at high latitudes in the Southern Hemisphere, and small changes in the tropics.

View Article and Find Full Text PDF

The Multi-Sensor Advanced Climatology of Liquid Water Path (MAC-LWP), an updated and enhanced version of the University of Wisconsin (UWisc) cloud liquid water path (CLWP) climatology, currently provides 29 years (1988 - 2016) of monthly gridded (1°) oceanic CLWP information constructed using Remote Sensing Systems (RSS) inter-calibrated 0.25°-resolution retrievals. Satellite sources include SSM/I, TMI, AMSR-E, WindSat, SSMIS, AMSR-2 and GMI.

View Article and Find Full Text PDF

Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers.

View Article and Find Full Text PDF

Satellite temperature measurements do not support the recent claim of a "leveling off of warming" over the past two decades. Tropospheric warming trends over recent 20-year periods are always significantly larger (at the 10% level or better) than model estimates of 20-year trends arising from natural internal variability. Over the full 38-year period of the satellite record, the separation between observed warming and internal variability estimates is even clearer.

View Article and Find Full Text PDF