Publications by authors named "F Chalmel"

Background: Considering the large diversity of chemicals present in the environment and the need to study their effects (alone or as mixtures), the development of high-throughput in vitro assays in line with the Replacement, Reduction, Refinement (3R) strategy is essential for chemical risk assessments.

Results: We developed a robust analytical workflow based on both low resolution tandem mass spectrometry (MS/MS) and high-resolution mass spectrometry (HRMS) to quantify 13 steroids in NCI-H295R cell culture medium, human plasma and serum. The workflow was validated by screening media from the NCI-H295R cell line exposed in dose-response experiments to 5 endocrine disruptors (EDs) such as bisphenol A, prochloraz, ketoconazole, atrazine and forskolin.

View Article and Find Full Text PDF

Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys.

View Article and Find Full Text PDF

Thyroperoxidase (TPO) is central in thyroid hormone (TH) synthesis and inhibition can lead to TH deficiency. Many chemicals can inhibit TPO activity in vitro, but how this may manifest in the developing thyroid gland at the molecular level is unclear. Here, we characterized the thyroid gland transcriptome of male rats developmentally exposed to the in vitro TPO-inhibitors amitrole, 2-mercaptobenzimidazole (MBI), or cyanamide by use of Bulk-RNA-Barcoding (BRB) and sequencing.

View Article and Find Full Text PDF

The prevalence of hormone-related health issues caused by exposure to endocrine disrupting chemicals (EDCs) is a significant, and increasing, societal challenge. Declining fertility rates together with rising incidence rates of reproductive disorders and other endocrine-related diseases underscores the urgency in taking more action. Addressing the growing threat of EDCs in our environment demands robust and reliable test methods to assess a broad variety of endpoints relevant for endocrine disruption.

View Article and Find Full Text PDF