Wiley Interdiscip Rev Nanomed Nanobiotechnol
January 2017
With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety-preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read-across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter-experimental variation, and makes substantial savings in time and cost.
View Article and Find Full Text PDFHypoxic-ischemic (HI) brain injury is one of the main causes of disabilities in term-born infants. It is the result of a deprivation of oxygen and glucose in the neural tissue. As one of the most important causes of brain damage in the newborn period, the neonatal HI event is a devastating condition that can lead to long-term neurological deficits or even death.
View Article and Find Full Text PDFOver the past decade, much has been learned about the cellular and molecular mechanisms underlying hypoxic-ischemic (H-I) injury in the preterm human brain. The pathogenesis of H-I brain injury is now understood to be multifactorial and quite complex, depending on (i) the severity, intensity and timing of asphyxia, (ii) selective ischemic vulnerability, (iii) the degree of maturity of the brain, and (iv) the characteristics of the ensuing reoxygenation/reperfusion phase. Each of these factors has differential effects on the distinct cell populations in the brain, with certain specific cell types being particularly vulnerable in the developing brain.
View Article and Find Full Text PDFWe present results of a series of laser spectroscopic measurements on in vitro samples of cardiovascular tissue. These include laser Raman scattering, Fourier transform infrared, plasma emission and fluorescence, and electron paramagnetic resonance spectroscopy. The results of these spectroscopic measurements are discussed in terms of their implications for the field of laser angioplasty.
View Article and Find Full Text PDF