Publications by authors named "F Carollo"

Understanding quantum many-body systems with long-range or infinite-range interactions is of relevance across a broad set of physical disciplines, including quantum optics, nuclear magnetic resonance, and nuclear physics. From a theoretical viewpoint, these systems are appealing since they can be efficiently studied with numerics, and in the thermodynamic limit are expected to be governed by mean-field equations of motion. Over the past years the capabilities to experimentally create long-range interacting systems have dramatically improved permitting their control in space and time.

View Article and Find Full Text PDF

The state of an open quantum system undergoing an adiabatic process evolves by following the instantaneous stationary state of its time-dependent generator. This observation allows one to characterize, for a generic adiabatic evolution, the average dynamics of the open system. However, information about fluctuations of dynamical observables, such as the number of photons emitted or the time-integrated stochastic entropy production in single experimental runs, requires controlling the whole spectrum of the generator and not only the stationary state.

View Article and Find Full Text PDF

We consider quantum-jump trajectories of Markovian open quantum systems subject to stochastic in time resets of their state to an initial configuration. The reset events provide a partitioning of quantum trajectories into consecutive time intervals, defining sequences of random variables from the values of a trajectory observable within each of the intervals. For observables related to functions of the quantum state, we show that the probability of certain orderings in the sequences obeys a universal law.

View Article and Find Full Text PDF

A boundary time crystal is a quantum many-body system whose dynamics is governed by the competition between coherent driving and collective dissipation. It is composed of N two-level systems and features a transition between a stationary phase and an oscillatory one. The fact that the system is open allows one to continuously monitor its quantum trajectories and to analyze their dependence on parameter changes.

View Article and Find Full Text PDF

We investigate the quantum reaction-diffusion dynamics of fermionic particles which coherently hop in a one-dimensional lattice and undergo annihilation reactions. The latter are modelled as dissipative processes which involve losses of pairs 2A→∅, triplets 3A→∅, and quadruplets 4A→∅ of neighboring particles. When considering classical particles, the corresponding decay of their density in time follows an asymptotic power-law behavior.

View Article and Find Full Text PDF