During the VIABLE ISS project (eValuatIon And monitoring of microBiofiLms insidE International Space Station), water samples subjected to two different silver treatments were sent and kept on board the International Space Station (ISS) from 2011 to 2016. In this note we report data on the viable and total bacterial load and on the composition of the microbial communities of the VIABLE ISS samples.
View Article and Find Full Text PDFPerformed inside International Space Station (ISS) from 2011 to 2016, VIABLE (eValuatIon And monitoring of microBiofiLms insidE International Space Station) ISS was a long-lasting experiment aimed at evaluating the bacterial contamination on different surface space materials subjected to different pre-treatment, to provide useful information for future space missions. In this work, surfaces samples of the VIABLE ISS experiment were analyzed to determine both the total bacterial load (ATP-metry, qPCR) and the composition of the microbial communities (16S rRNA genes amplicon sequencing). Data obtained showed a low bacterial contamination of all the surfaces, with values in agreement with those allowed inside ISS, and with a taxonomic composition similar to those found in previous studies (Enterobacteriales, Bacillales, Lactobacillales and Actinomycetales).
View Article and Find Full Text PDFBackground: The intestinal microbial communities and their temporal dynamics are gaining increasing interest due to the significant implications for human health. Recent studies have shown the dynamic behavior of the gut microbiota in free-living, healthy persons. To date, it is not known whether these dynamics are applicable during prolonged life sharing in a confined and controlled environment.
View Article and Find Full Text PDF