Bacterial meningoencephalitis in newborns is a severe and life-threatening pathology, which results from meningeal infection and the subsequent involvement of the brain parenchyma. The severity of the acute onset of symptoms and the risk of neurodevelopmental adverse sequelae in children strongly depend on the timing of the infection, the immunological protection transmitted by the mother to the fetus during pregnancy, and the neonate's inflammatory and immune system response after birth. Although the incidence of neonatal meningitis and meningoencephalitis and related mortality declined in the past twenty years with the improvement of prenatal care and with the introduction of intrapartum antibiotic prophylaxis against Streptococcus beta Hemolyticus group B (Streptococcus Agalactiae) in the 1990s, bacterial meningitis remains the most common form of cerebrospinal fluid infection in pediatric patients.
View Article and Find Full Text PDFObjective: Few studies have evaluated the efficacy of antiseizure medications (ASMs) according to the etiology of neonatal acute provoked seizures. We aimed to investigate the response to ASMs in term/near term neonates with acute arterial ischemic stroke (AIS), as well as the type of seizure at presentation and the monitoring approach.
Methods: We retrospectively evaluated neonates from 15 European level IV neonatal intensive care units who presented with seizures due to AIS and were monitored by continuous electroencephalography (cEEG) and/or amplitude-integrated EEG (aEEG) in whom actual recordings, timing, doses, and response to ASMs were available for review.
High-power Yb:InnoSlab lasers are proliferating into multiple modern application areas of laser physics ranging from plasma physics and nanolithography to driving optical parametric amplifiers for high-harmonic generation and attosecond science. Here, we present, the layout, design and first results of an optical parametric chirped-pulse amplifier system pumped by a kW-level average power Yb-InnoSlab laser. We describe the layout and concepts of the pump lasers, with particular attention to the specific design principles required for our application.
View Article and Find Full Text PDFTargeted spatial transcriptomic methods capture the topology of cell types and states in tissues at single-cell and subcellular resolution by measuring the expression of a predefined set of genes. The selection of an optimal set of probed genes is crucial for capturing the spatial signals present in a tissue. This requires selecting the most informative, yet minimal, set of genes to profile (gene set selection) for which it is possible to build probes (probe design).
View Article and Find Full Text PDFThe emission of high-order harmonics from solids under intense laser-pulse irradiation is revolutionizing our understanding of strong-field solid-light interactions, while simultaneously opening avenues towards novel, all-solid, coherent, short-wavelength table-top sources with tailored emission profiles and nanoscale light-field control. To date, broadband spectra in solids have been generated well into the extreme-ultraviolet (XUV), but the comparatively low conversion efficiency in the XUV range achieved under optimal conditions still lags behind gas-based high-harmonic generation (HHG) sources. Here, we demonstrate that two-color high-order harmonic wave mixing in a fused silica solid is more efficient than solid HHG driven by a single color.
View Article and Find Full Text PDF