Publications by authors named "F Calamante"

Accurately measuring the evolution of Multiple Sclerosis (MS) with magnetic resonance imaging (MRI) critically informs understanding of disease progression and helps to direct therapeutic strategy. Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area. Obtaining sufficient data from a single clinical site is challenging and does not address the heterogeneous need for model robustness.

View Article and Find Full Text PDF

In medicine, abnormalities in quantitative metrics such as the volume reduction of one brain region of an individual versus a control group are often provided as deviations from so-called normal values. These normative reference values are traditionally calculated based on the quantitative values from a control group, which can be adjusted for relevant clinical co-variables, such as age or sex. However, these average normative values do not take into account the globality of the available quantitative information.

View Article and Find Full Text PDF

This study introduces a novel brain connectome matrix, track-weighted PET connectivity (twPC) matrix, which combines positron emission tomography (PET) and diffusion magnetic resonance imaging data to compute a PET-weighted connectome at the individual subject level. The new method is applied to characterise connectivity changes in the Alzheimer's disease (AD) continuum. The proposed twPC samples PET tracer uptake guided by the underlying white matter fibre-tracking streamline point-to-point connectivity calculated from diffusion MRI (dMRI).

View Article and Find Full Text PDF

Diffusion-weighted Imaging (DWI) is a non-invasive imaging technique based on Magnetic Resonance Imaging (MRI) principles to measure water diffusivity and reveal details of the underlying brain micro-structure. By fitting a tensor model to quantify the directionality of water diffusion a Diffusion Tensor Image (DTI) can be derived and scalar measures, such as fractional anisotropy (FA), can then be estimated from the DTI to summarise quantitative microstructural information for clinical studies. In particular, FA has been shown to be a useful research metric to identify tissue abnormalities in neurological disease (e.

View Article and Find Full Text PDF

A characteristic feature of human cognition is our ability to 'multi-task'-performing two or more tasks in parallel-particularly when one task is well learned. How the brain supports this capacity remains poorly understood. Most past studies have focussed on identifying the areas of the brain-typically the dorsolateral prefrontal cortex-that are required to navigate information-processing bottlenecks.

View Article and Find Full Text PDF