Publications by authors named "F Caddeo"

Article Synopsis
  • Understanding the reaction mechanism and coordination of ligands and solvents is essential for controlling the fabrication of transition metal sulfide nanocrystals.
  • The study employs advanced techniques such as HERFD-XAS and vtc-XES alongside DFT calculations to explore the formation of various zinc complexes during the synthesis of ZnS nanorods in oleylamine.
  • The transition in the electronic structure of the zinc complexes is observed, revealing insights into the size-dependent electronic band gaps of synthesized nanocrystals.
View Article and Find Full Text PDF

Accurate and precise detection of disease-associated proteins, such as C-reactive protein (CRP), remains a challenge in biosensor development. Herein, we present a novel approach-an integrated disposable aptasensor array-designed for precise, ultra-sensitive, and parallel detection of CRP in plasma samples. This integrated biosensing array platform enables multiplex parallel testing, ensuring the accuracy and reliability in sample analysis.

View Article and Find Full Text PDF

Cu thin films and Cu O microstructures were partially converted to the Metal-Organic Frameworks (MOFs) Cu (BTC) or Cu(TCPP) using an electrochemical process with a higher control and at milder conditions compared to the traditional solvothermal MOF synthesis. Initially, either a Cu thin film was sputtered, or different kinds of Cu or Cu O microstructures were electrochemically deposited onto a conductive ITO glass substrate. Then, these Cu thin films or Cu-based microstructures were subsequently coated with a thin layer of either Cu (BTC) or Cu(TCPP) by controlled anodic dissolution of the Cu-based substrate at room temperature and in the presence of the desired organic linker molecules: 1,3,5-benzenetricarboxylic acid (BTC) or photoactive 4,4',4'',4'''-(Porphine-5,10,15,20-tetrayl) tetrakis(benzoic acid) (TCPP) in the electrolyte.

View Article and Find Full Text PDF

CuBi O has recently emerged as a promising photocathode for photo-electrochemical (PEC) water splitting. However, its fast degradation under operation currently poses a limit to its application. Here, we report a novel method to study operando the semiconductor-electrolyte interface during PEC operation by surface-sensitive high-energy X-ray scattering.

View Article and Find Full Text PDF

Controlling the crystallization of Metal-Organic Frameworks (MOFs) at the nanoscale is currently challenging, and this hinders their utilization for multiple applications including photo(electro)chemistry and sensors. In this work, we show a synthetic protocol that enables the preparation of highly homogeneous CuO@MOF nanowires standing on a conductive support with extensive control over the crystallization of the MOF nanoparticles at the surface of the CuO nanowires. CuO nanowires were first prepared via templated electrodeposition, and then partially converted into the well-known Cu-MOF HKUST-1 by pulsed electrochemical oxidation.

View Article and Find Full Text PDF