The mitochondrial voltage-dependent anion channel 1 (VDAC1) is involved in the release of apoptotic proteins with possible relevance in Alzheimer's disease (AD) neuropathology. Through proteomic analysis followed by Western blotting and immunohistochemical techniques, we have found that VDAC1 is overexpressed in the hippocampus from amyloidogenic AD transgenic mice models. VDAC1 was also overexpressed in postmortem brain tissue from AD patients at an advanced stage of the disease.
View Article and Find Full Text PDFEven though the idea that amyloid beta peptide accumulation is the primary event in the pathogenesis of Alzheimer's disease has become the leading hypothesis, the causal link between aberrant amyloid precursor protein processing and tau alterations in this type of dementia remains controversial. We further investigated the role of beta-amyloid production/deposition in tau pathology and neuronal cell death in the mouse brain by crossing Tg2576 and VLW lines expressing human mutant amyloid precursor protein and human mutant tau, respectively. The resulting double transgenic mice showed enhanced amyloid deposition accompanied by neurofibrillary degeneration and overt neuronal loss in selectively vulnerable brain limbic areas.
View Article and Find Full Text PDFIn addition to genetic factors, environmental factors have long been suspected to contribute to the pathogenesis of Parkinson's disease (PD). We investigated the possible interaction between genetic factors and neurotoxins by testing whether alpha-synuclein A30P Tg5093 transgenic mice show increased sensitivity to secondary toxic insults like 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone. While sensitivity to chronic treatment with rotenone was not enhanced in the Tg5093 line, chronic treatment with 80 or 150 mg/kg MPTP resulted in increased deterioration of the nigrostriatal dopaminergic system as assessed by quantitation of nigral tyrosine hydroxylase (TH) positive neurons and striatal dopamine (DA) levels in Tg5093 mice when compared to non-transgenic littermate controls.
View Article and Find Full Text PDFThe synthesis of new 1,3-phenylene derivatives and their preliminary evaluation as antivirals (Herpes simplex 1, HSV-1) whose antiherpetic activity can be related with the inhibition of the interaction of the origin binding protein (OBP) with the DNA are presented. The new compounds are adjusted to a previously defined common structural model, consisting of a central aromatic system, which presents two side chains of different lengths in relative position 1, 3; these chains are made up of atomic groups characterized by the alternation of positive and negative centers, situating differently substituted rings, preferably aromatic, at the ends of both chains. Some of these derivatives, such as N,N''-(4-methoxy-1,3-phenylene)bis[N'-(4-nitrophenyl)urea] (2c) or (1,3-phenylene)bis[N-(p-tolyl)aminosulfonyl] (11b), show antiherpetic activity related to the proposed mechanism.
View Article and Find Full Text PDFSynergistic inhibition of HIV replication in cell culture has been reported for many combinations of reverse transcriptase inhibitors. However, the biochemical basis underlying this interaction is in most cases unknown. It has been previously shown that combinations of L-697,661 or U-90152s with AZT or ddC synergistically inhibit HIV-1 replication in cell culture.
View Article and Find Full Text PDF