The deterministic generation of non-classical states of light, including squeezed states, Fock states and Bell states, plays an important role in quantum information processing and exploration of the physics of quantum entanglement. Preparation of these non-classical states in resonators is non-trivial due to their inherent harmonicity. Here we use stimulated Raman adiabatic passage to generate microwave photon Fock states in a superconducting circuit quantum electrodynamics system comprised of a fixed-frequency transmon qubit in a three-dimensional microwave cavity at 20 mK.
View Article and Find Full Text PDFMaterial-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system.
View Article and Find Full Text PDFWe describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T.
View Article and Find Full Text PDFThe spectral density S(Φ)(f) = A(2)/(f/1 Hz)(α) of magnetic flux noise in ten dc superconducting quantum interference devices (SQUIDs) with systematically varied geometries shows that α increases as the temperature is lowered; in so doing, each spectrum pivots about a nearly constant frequency. The mean-square flux noise, inferred by integrating the power spectra, grows rapidly with temperature and at a given temperature is approximately independent of the outer dimension of a given SQUID. These results are incompatible with a model based on the random reversal of independent, surface spins.
View Article and Find Full Text PDFWe present results on a circuit QED experiment in which a separate transmission line is used to address a quasilumped element superconducting microwave resonator which is in turn coupled to an Al/AlO(x)/Al Cooper-pair box charge qubit. With our device, we find a strong correlation between the lifetime of the qubit and the inverse of the coupling between the qubit and the transmission line. At the smallest coupling we measured, the lifetime of the Cooper-pair box was T₁=200 μs, which represents more than a twentyfold improvement in the lifetime of the Cooper-pair box compared with previous results.
View Article and Find Full Text PDF