Publications by authors named "F C Anapol"

The mechanical behavior of mammalian mandibles is well-studied, but a comprehensive biomechanical analysis (incorporating detailed muscle architecture, accurate material properties, and three-dimensional mechanical behavior) of an extant archosaur mandible has never been carried out. This makes it unclear how closely models of extant and extinct archosaur mandibles reflect reality and prevents comparisons of structure-function relationships in mammalian and archosaur mandibles. We tested hypotheses regarding the mechanical behavior of the mandible of Alligator mississippiensis by analyzing reaction forces and bending, shear, and torsional stress regimes in six models of varying complexity.

View Article and Find Full Text PDF

The functional effects of bone and suture stiffness were considered here using finite element models representing three different theoretical phenotypes of an Alligator mississippiensis mandible. The models were loaded using force estimates derived from muscle architecture in dissected specimens, constrained at the 18th and 19th teeth in the upper jaw and 19th tooth of the lower jaw, as well as at the quadrate-articular joint. Stiffness was varied systematically in each theoretical phenotype.

View Article and Find Full Text PDF

Common (Callithrix jacchus) and pygmy (Cebuella pygmaea) marmosets and cotton-top tamarins (Saguinus oedipus) share broadly similar diets of fruits, insects, and tree exudates. Marmosets, however, differ from tamarins in actively gouging trees with their anterior dentition to elicit tree exudates flow. Tree gouging in common marmosets involves the generation of relatively wide jaw gapes, but not necessarily relatively large bite forces.

View Article and Find Full Text PDF

The biomechanical determinants of the scaling of chew cycle duration are important components of models of primate feeding systems at all levels, from the neuromechanical to the ecological. Chew cycle durations were estimated in 35 species of primates and analyzed in conjunction with data on morphological variables of the feeding system estimating moment of inertia of the mandible and force production capacity of the chewing muscles. Data on scaling of primate chew cycle duration were compared with the predictions of simple pendulum and forced mass-spring system models of the feeding system.

View Article and Find Full Text PDF

Body weight and length, chest girth, and seven postcranial limb segment lengths are compared between two guenon species, Chlorocebus (Cercopithecus) aethiops (vervets) and Cercopithecus mitis (blue monkeys), exhibiting different habitual locomotor preferences. The subjects, all adults, were wild caught for a non-related research project (Turner et al. [1986] Genetic and morphological studies on two species of Kenyan monkeys, C.

View Article and Find Full Text PDF