Publications by authors named "F Broders"

In Xenopus laevis somitogenesis, somitic blocks undergo coordinated movements resulting in their detachment from the rest of the mesodermal ridge, followed by a 90 degrees rotation of the entire metamere. Here we investigated the function of type I cadherins in somitogenesis. Type I cadherins are Ca(2+)-dependent cell-cell adhesion molecules concentrated in the adherens junctions and highly expressed in the somitic tissue.

View Article and Find Full Text PDF

Type I cadherins are Ca2+-dependent cell adhesion molecules. Their function in early Xenopus laevis development has been extensively studied in recent years, by injecting synthetic mRNAs encoding dominant negative mutants with deletions of the extracellular domain into embryos. However, studies at post-gastrula stages have been hampered by the inabilityto progress through post-gastrula development in embryos expressing these mutant proteins.

View Article and Find Full Text PDF

In amphibians and birds, one of the first steps of neural crest cell (NCC) determination is expression of the transcription factor Slug. This marker has been used to demonstrate that BMP and Wnt molecules play a major role in NCC induction. However, it is unknown whether Slug expression is directly or indirectly regulated by these signals.

View Article and Find Full Text PDF

Otx2, a vertebrate homologue of the Drosophila orthodenticle gene, coordinates two processes in early embryonic development. Not only does it specify cell fate in the anterior regions of the embryo, it also prevents the cells that express it from participating in the convergence extension movements that shape the rest of the body axis. Here we show that, in Xenopus, this latter function is mediated by XclpH3, transcription of which is directly stimulated by Xotx2.

View Article and Find Full Text PDF

A truncated form of Xenopus E-cadherin (deltaE-cad) comprising the cytoplasmic and transmembrane domains was overexpressed generating a dominant negative mutation in the urodelan amphibian embryo Pleurodeles waltl. deltaE-cad mRNA and rhodamine-lysinated-dextran (RLDx) cell lineage tracer were microinjected into 32-cell stage blastomeres which contribute principally to the notochord and central nervous system. deltaE-cad expression causes defects in forebrain and hindbrain formation coupled with the development of supernumerary vesicles.

View Article and Find Full Text PDF