Publications by authors named "F Briki"

Generative machine learning models such as Generative Adversarial Networks (GANs) have been shown to be especially successful in generating realistic synthetic data in image and tabular domains. However, it has been shown that such generative models, as well as the generated synthetic data, can reveal information contained in their privacy-sensitive training data, and therefore must be carefully evaluated before being used. The gold standard method through which such privacy leakage can be estimated is simulating membership inference attacks (MIAs), in which an attacker attempts to learn whether a given sample was part of the training data of a generative model.

View Article and Find Full Text PDF

The first case of hereditary fibrinogen Aα-chain amyloidosis was recognized >20 years ago, but disease mechanisms still remain unknown. Here we report detailed clinical and proteomics studies of a French kindred with a novel amyloidogenic fibrinogen Aα-chain frameshift variant, Phe521Leufs, causing a severe familial form of renal amyloidosis. Next, we focused our investigations to elucidate the molecular basis that render this Aα-chain variant amyloidogenic.

View Article and Find Full Text PDF

Elastic properties of cells are mainly derived from the actin cytoskeleton. However, intermediate filaments are emerging as major contributors to the mechanical properties of cells. Using atomic force microscopy, we studied the elasticity of mouse myoblasts expressing a mutant form of the gene encoding for desmin intermediate filaments, p.

View Article and Find Full Text PDF

Mutations within the human desmin gene are responsible for a subcategory of myofibrillar myopathies called desminopathies. However, a single inherited mutation can produce different phenotypes within a family, suggesting that environmental factors influence disease states. Although several mouse models have been used to investigate organ-specific desminopathies, a more general mechanistic perspective is required to advance our knowledge toward patient treatment.

View Article and Find Full Text PDF

Mechanics is now recognized as crucial in cell function. To date, the mechanical properties of cells have been inferred from experiments which investigate the roles of actin and microtubules ignoring the intermediate filaments (IFs) contribution. Here, we analyse myoblasts behaviour in the context of myofibrillar myopathy resulting from p.

View Article and Find Full Text PDF