The plant endoplasmic reticulum (ER) contacts heterotypic membranes at membrane contact sites (MCSs) through largely undefined mechanisms. For instance, despite the well-established and essential role of the plant ER-chloroplast interactions for lipid biosynthesis, and the reported existence of physical contacts between these organelles, almost nothing is known about the ER-chloroplast MCS identity. Here we show that the Arabidopsis ER membrane-associated VAP27 proteins and the lipid-binding protein ORP2A define a functional complex at the ER-chloroplast MCSs.
View Article and Find Full Text PDFEnvironmental and physiological situations can challenge the balance between protein synthesis and folding capacity of the endoplasmic reticulum (ER) and cause ER stress, a potentially lethal condition. The unfolded protein response (UPR) restores ER homeostasis or actuates programmed cell death (PCD) when ER stress is unresolved. The cell fate determination mechanisms of the UPR are not well understood, especially in plants.
View Article and Find Full Text PDFPhotosynthesis requires CO as the carbon source, and the levels of ambient CO determine the oxygenation or carboxylation of Ribulose-1,5-bisphosphate (RuBP) by RuBP carboxylase/oxygenase (Rubisco). Low CO levels lead to oxygenation and result in photorespiration, which ultimately causes a reduction in net carbon assimilation through photosynthesis. Therefore, an increased understanding of plant responses to low CO contributes to the knowledge of how plants circumvent the harmful effects of photorespiration.
View Article and Find Full Text PDF