Publications by authors named "F Boulmedais"

The surface engineering of biomaterials is crucial for their successful (bio)integration by the body, the colonization by the tissue-specific cell, and the prevention of fibrosis and/or bacterial colonization. Performed at room temperature in an aqueous medium, the layer-by-layer (LbL) coating method is based on the alternating deposition of macromolecules. Versatile and simple, this method allows the functionalization of surfaces with proteins, which play a crucial role in several biological mechanisms.

View Article and Find Full Text PDF

Delving into the mechanism behind the molecular interactions at the atomic level of short-sequence peptides plays a key role in the development of nanomaterials with specific structure-property-function relationships from a bottom-up perspective. Due to their poor water solubility, the self-assembly of Fmoc-bearing peptides is usually induced by dissolution in an organic solvent, followed by a dilution step in water, pH changes, and/or a heating-cooling process. Herein, we report a straightforward methodology for the gelation of Fmoc-FFpY (F: phenylalanine; Y: tyrosine; and p: PO), a negatively charged tripeptide, in NaCl solution.

View Article and Find Full Text PDF

Hypothesis: Adjusting the water content and mechanical properties of polyelectrolyte coacervates for optimal underwater adhesion requires simultaneous control of the macromolecular design and the type and concentration of the salt used. Using synthetic or bio-inspired polymers to make coacervates often involves complicated chemistries and large variations in salt concentration. The underwater adhesiveness of simple, bio-sourced coacervates can be tuned with relatively small variations in salt concentration.

View Article and Find Full Text PDF

Despite the long history of investigations of polyelectrolyte multilayer formation on solid or liquid surfaces, important questions remain open concerning the construction of the first set of layers. These are generally deposited on a first anchoring layer of different chemistry, influencing their construction and properties. We propose here an in-depth investigation of the formation of NaPSS/PAH multilayers at the air/water interface in the absence of a chemically different anchoring layer, profiting from the surface activity of NaPSS.

View Article and Find Full Text PDF