In this article, we are presenting an original selective plane illumination fluorescence microscope dedicated to image "Organ-on-chip"-like biostructures in microfluidic chips. In order to be able to morphologically analyze volumetric samples in development at the cellular scale inside microfluidic chambers, the setup presents a compromise between relatively large field of view (∼ 200 µm) and moderate resolution (∼ 5 µm). The microscope is based on a simple design, built around the chip and its microfluidic environment to allow 3D imaging inside the chip.
View Article and Find Full Text PDFMicroencapsulation technologies have experienced much growth over the past decades and are commonly used for food, cosmetic, pharmaceutical and biomedical applications. Certain application fields impose stricter requirements on the polymer capsules. In many biomedical applications including bioencapsulation, cell therapy and drug delivery applications, capsules are required to have a controlled shape and size, as well as a defined mechanical stability and porosity.
View Article and Find Full Text PDFIntroduction: The extension of islet transplantation to a wider number of type 1 diabetes patients is compromised by severe adverse events related to the immunosuppressant therapy required for allogenic islet transplantation. In this context, microencapsulation offers the prospects of immunosuppressive-free therapy by physically isolating islets from the immune system. However, current biomaterials need to be optimized to: improve biocompatibility, guaranty the maintenance of graft viability and functionality, and prevent fibrosis overgrowth around the capsule in vivo.
View Article and Find Full Text PDFOrganoid cultures in 3D matrices are relevant models to mimic the complex in vivo environment that supports cell physiological and pathological behaviors. For instance, 3D epithelial organoids recapitulate numerous features of glandular tissues including the development of fully differentiated acini that maintain apico-basal polarity with hollow lumen. Effective genetic engineering in organoids would bring new insights in organogenesis and carcinogenesis.
View Article and Find Full Text PDFCurrent efforts in nanofluidics aimed at detecting scarce molecules or particles are focused mainly on the development of electrokinetic-based devices. However, these techniques require either integrated or external electrodes, and a potential drop applied across a carrier fluid. One challenge is to develop a new generation of electroless passive devices involving a simple technological process and packaging without embedded electrodes for micro- and nanoparticles enrichment with a view to applications in biology such as the detection of viral agents or cancers biomarkers.
View Article and Find Full Text PDF