Renal impairment is a common complication in patients with short bowel syndrome with intestinal failure (SBS-IF). Glucagon-like peptide-2 analogs, such as apraglutide, have been developed as a treatment option for SBS-IF. This study assessed the potential for apraglutide overexposure in individuals with severely impaired renal function versus healthy volunteers with normal renal function.
View Article and Find Full Text PDFApraglutide (FE 203799) is a glucagon-like peptide-2 (GLP-2) analog under development for the treatment of intestinal failure associated with short bowel syndrome (SBS-IF) and graft-versus-host disease (GvHD). Compared with native GLP-2, apraglutide has slower absorption, reduced clearance, and higher protein binding, enabling once-weekly dosing. This study evaluated the pharmacokinetic (PK) and pharmacodynamic (PD) profile of apraglutide in healthy adults.
View Article and Find Full Text PDFBackground: Apraglutide is a novel long-acting glucagon-like peptide-2 (GLP-2) analog designed for once-weekly subcutaneous dosing, with the potential to increase fluid and nutrient absorption by the remnant intestine of patients who have short bowel syndrome (SBS) with intestinal insufficiency (SBS-II) or intestinal failure (SBS-IF). This trial investigated the safety and effects on intestinal absorption of apraglutide in patients with SBS-II and SBS-IF.
Methods: In this open-label, phase 1 and 2 trial, adult patients with SBS-II (n = 4) or SBS-IF (n = 4) and a fecal output of ≥1500 g/day received once-weekly subcutaneous 5 mg apraglutide for 4 weeks.
Autism spectrum disorder (ASD) is defined by hallmark behaviors involving reduced communication and social interaction as well as repetitive activities and restricted interests. ASD represents a broad spectrum, from minimally affected individuals to those requiring intense support, with additional manifestations often including anxiety, irritability/aggression and altered sensory processing. Gastrointestinal (GI) issues are also common in ASD, and studies have identified changes in the gut microbiome of individuals with ASD compared to control populations, complementing recent findings of differences in gut-derived metabolites in feces and circulation.
View Article and Find Full Text PDF