Background: Health advocacy is considered to be a core competence for physicians, but it remains unclear how the health advocacy role, despite being described in overarching competency frameworks, is operationalized in undergraduate medical education (UME). This study aimed to identify how health advocacy is conceptualized and taught in undergraduate medical curricula.
Methods: We performed a qualitative analysis of curriculum documents from all eight medical schools in the Netherlands, all of which offered competency-based UME.
Characterizing uranium (U) mine water is necessary to understand and design an effective bioremediation strategy. In this study, water samples from two former U-mines in East Germany were analysed. The U and sulphate (SO) concentrations of Schlema-Alberoda mine water (U: 1 mg/L; SO: 335 mg/L) were 2 and 3 order of magnitude higher than those of the Pöhla sample (U: 0.
View Article and Find Full Text PDFThis study presents a comprehensive community data-driven surface complexation modeling framework for simulating potentiometric titration of mineral surfaces. Compiled community data for ferrihydrite, goethite, hematite, and magnetite are fit to produce representative protolysis constants that can reproduce potentiometric titration data collected from multiple literature sources. Using this framework, the impact of surface complexation model type and surface site density (SSD) on the fit quality and protolysis constants can be readily evaluated.
View Article and Find Full Text PDFMicrobial U(VI) reduction influences uranium mobility in contaminated subsurface environments and can affect the disposal of high-level radioactive waste by transforming the water-soluble U(VI) to less mobile U(IV). The reduction of U(VI) by the sulfate-reducing bacterium Desulfosporosinus hippei DSM 8344, a close phylogenetic relative to naturally occurring microorganism present in clay rock and bentonite, was investigated. D.
View Article and Find Full Text PDFThis paper presents a comprehensive data-to-model workflow, including a findable, accessible, interoperable, reusable (FAIR) community sorption database (newly developed LLNL Surface Complexation/Ion Exchange (L-SCIE) database) along with a data fitting workflow to efficiently optimize surface complexation reaction constants with multiple surface complexation model (SCM) constructs. This workflow serves as a universal framework to mine, compile, and analyze large numbers of published sorption data as well as to estimate reaction constants for parameterizing reactive transport models. The framework includes (1) data digitization from published papers, (2) data unification including unit conversions, and (3) data-model integration and reaction constant estimation using geochemical software PHREEQC coupled with the universal parameter estimation code PEST.
View Article and Find Full Text PDF