Table olives are one of the most known fruit consumed as fermented food, being a fundamental component of the Mediterranean diet. Their production and consumption continue to increase globally and represent an important economic source for the producing countries. One of the most stimulating challenges for the future is the modernization of olive fermentation process.
View Article and Find Full Text PDFOlive ( L.) is one of the oldest and most important fruit tree species cultivated in the Mediterranean region. Various plant tissues, drupes, and olive oil contain several phenolics (including verbascoside, although it is present in the plant at a low level) that are well-known for their highly beneficial effects on human health.
View Article and Find Full Text PDFThe inhibition of carbohydrate digestion by plant bioactive compounds is a potential dietary strategy to counteract type 2 diabetes. Indeed, inhibition of α-amylase, a key enzyme that carries out the bulk of starch digestion, has been demonstrated for a range of bioactive compounds including anthocyanins; however, sample pigmentation often interferes with measurements, affecting colorimetric assay outcomes. Therefore, the present study compared the performance of a direct chromogenic assay, using 2-chloro-4 nitrophenyl α-D-maltotrioside (CNPG3) as a substrate, with the commonly used 3,5-dinitrosalicylic acid (DNS) assay.
View Article and Find Full Text PDFIn the past decades, many studies have widely examined the effects of dietary polyphenols on human health. Polyphenols are well known for their antioxidant properties and for their chelating abilities, by which they can be potentially employed in cases of pathological conditions, such as iron overload. In this review, we have highlighted the chelating abilities of polyphenols, which are due to their structural specific sites, and the differences for each class of polyphenols.
View Article and Find Full Text PDFThe health-promoting properties of natural plant bioactive compounds are mainly attributable to their ability to counteract oxidative stress. This is considered a major causative factor in aging and aging-related human diseases, in which a causal role is also ascribed to dicarbonyl stress. This is due to accumulation of methylglyoxal (MG) and other reactive dicarbonyl species, leading to macromolecule glycation and cell/tissue dysfunction.
View Article and Find Full Text PDF