Because of the worldwide shortage of graftable corneas, alternatives to restore visual impairments, such as the production of a functional human cornea by tissue engineering, have emerged. Self-renewal of the corneal epithelium through the maintenance of a sub-population of corneal stem cells is required to maintain the functionality of such a reconstructed cornea. We previously reported an association between stem cell differentiation and the level to which they express the transcription factors Sp1 and NFI.
View Article and Find Full Text PDFThe combination of gene therapy and tissue engineering is one of the most promising strategies for the treatment of recessive dystrophic epidermolysis bullosa (RDEB). RDEB is a rare genetic disease characterised by mutations in the COL7A1 gene, encoding type VII collagen (COLVII), which forms anchoring fibrils at the dermal-epidermal junction of the skin. This disease causes severe blistering and only palliative treatments are offered.
View Article and Find Full Text PDFThe growth of primary keratinocytes is improved by culturing them with a feeder layer. The aim of this study was to assess whether the feeder layer increases the lifespan of cultured epithelial cells by maintaining or improving telomerase activity and expression. The addition of an irradiated fibroblast feeder layer of either human or mouse origin (i3T3) helped maintain telomerase activity as well as expression of the transcription factor Sp1 in cultured keratinocytes.
View Article and Find Full Text PDFA fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties.
View Article and Find Full Text PDFMechanical strength and the production of extracellular matrix (ECM) are essential characteristics for engineered tissues designed to repair and replace connective tissues that are subject to stress and strain. In this study, dynamic mechanical stimulation (DMS) was investigated as a method to improve the mechanical properties of engineered tissues produced without the use of an exogenous scaffold, referred to as the self-assembly approach. This method, based exclusively on the use of human cells without any exogenous scaffolding, allows for the production of a tissue sheet comprised of cells and ECM components synthesized by dermal fibroblasts in vitro.
View Article and Find Full Text PDF