Publications by authors named "F Bettazzi"

Environmental DNA (eDNA) is a novel, non-invasive sampling procedure that allows the obtaining of genetic material directly from environmental samples without any evidence of biological sources. The eDNA methodology can greatly benefit from coupling it to reliable, portable and cost-effective tools able to perform decentralized measurements directly at the site of need and in resource-limited settings. Herein, we report a simple method for the selective analysis of eDNA using a magneto-assay with electrochemical detection.

View Article and Find Full Text PDF

An easy and reliable method based on a novel electroanalytical nanostructured sensor has been developed to perform quantification of vitamin C in commercial and fortified cow-milk-based formulae and foods for infants and young children. The work is motivated by the need of a reliable analytical tool to be applied in quality control laboratories for the quantitative assessment of vitamin C where its rapid and cost-effective monitoring is essential. The ad hoc designed sensor, based on disposable screen-printed carbon electrodes modified with Au nanoparticles decorated reduced graphene oxide flakes, exhibits a LOD of 0.

View Article and Find Full Text PDF

In the recent years, the number of commercial products containing engineered nanomaterials (ENMs) has increased exponentially. Consequently, the toxicological profile of ENMs on the ecosystems as well as on human health has to be carefully evaluated. Nanotoxicology, an interdisciplinary research area devoted to assessing the hazards associated with ENMs, is expanding rapidly.

View Article and Find Full Text PDF

Dopamine oxidation and self-polymerization have recently attracted great interest arising from the versatile chemistry of this endogenous catecholamine. Particularly interesting are the applications of polydopamine for surface coating, molecular imprinting, and electrochemistry, which are reviewed here, covering the broad fields of medicine, materials science, and (bio)analytical chemistry. Nonetheless, the peculiar physicochemical properties of dopamine and polydopamine, due to the redox potential of the catechol moiety, are not fully exploited.

View Article and Find Full Text PDF

A novel hybrid nanocomposite formed by RGO flakes, surface functionalized by 1-pyrene carboxylic acid (PCA), densely and uniformly in situ decorated by Au NPs, that are concomitantly coordinated by the PCA carboxylic group, and by an aromatic thiol used as the reducing agent in the synthesis, both ensuring, at the same time, a stable non-covalent NPs anchorage to the RGO flakes, and an efficient interparticle electron coupling along the NP network onto the RGO, is reported. The obtained solution processable hybrid material is used to modify Screen-Printed Carbon Electrodes (SPCEs). The hybrid modified SPCEs, functionalized with a thiolated DNA capture probe, are tested in a streptavidin-alkaline-phosphatase catalyzed assay, for the detection of the biotinylated miRNA-221, and for its determination in spiked human blood serum samples.

View Article and Find Full Text PDF