Publications by authors named "F Bedard"

Surveillance of antimicrobial use (AMU) and antimicrobial resistance (AMR) is a core component of the 2017 Pan-Canadian Framework for Action. There are existing AMU and AMR surveillance systems in Canada, but some stakeholders are interested in developing their own AMU monitoring/surveillance systems. It was recognized that the establishment of core (minimum) AMU data elements, as is necessary for policy or intervention development, would inform the development of practical and sustainable AMU surveillance capacity across food animal sectors in Canada.

View Article and Find Full Text PDF

In recent decades, bacteriocins have received substantial attention as antimicrobial compounds. Although bacteriocins have been predominantly exploited as food preservatives, they are now receiving increased attention as potential clinical antimicrobials and as possible immune-modulating agents. Infections caused by antibiotic-resistant bacteria have been declared as a global threat to public health.

View Article and Find Full Text PDF

Background: There is no recent systematic review on the risk of cross-reactivity to cephalosporins and carbapenems in penicillin-allergic patients despite many new studies on the subject. All past reviews have several limitations such as not including any patient with a T-cell-mediated penicillin allergy.

Objectives: To determine the risk of cross-reactivity to cephalosporins and carbapenems in patients with a proven IgE- or T-cell-mediated penicillin allergy.

View Article and Find Full Text PDF

The antimicrobial peptide bactofencin A is an unmodified non-pediocin-like bacteriocin that inhibits several clinically relevant pathogens, including Listeria monocytogenes and Staphylococcus aureus. Here we report the synthesis and structure-activity relationship studies of bactofencin A and novel analogues thereof. Synthetic bactofencin A was a potent inhibitor of L.

View Article and Find Full Text PDF

The antimicrobial peptide pediocin PA-1 is a class IIa bacteriocin that inhibits several clinically relevant pathogens including Listeria spp. Here we report the synthesis and characterization of whole pediocin PA-1 and novel analogs thereof using a combination of solid- and solution-phase strategies to overcome difficulties due to instability and undesired reactions. Pediocin PA-1 thus synthesized was a potent inhibitor of Listeria monocytogenes (MIC = 6.

View Article and Find Full Text PDF