Publications by authors named "F Barta"

Herein, an advanced bioconjugation technique to synthesize hybrid polymer-antibody nanoprobes tailored for fluorescent cell barcoding in flow cytometry-based immunophenotyping of leukocytes is applied. A novel approach of attachment combining two fluorescent dyes on the copolymer precursor and its conjugation to antibody is employed to synthesize barcoded nanoprobes of antibody polymer dyes allowing up to six nanoprobes to be resolved in two-dimensional cytometry analysis. The major advantage of these nanoprobes is the construct design in which the selected antibody is labeled with an advanced copolymer bearing two types of fluorophores in different molar ratios.

View Article and Find Full Text PDF

The plant extract aristolochic acid (AA), containing aristolochic acids I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases associated with upper urothelial cancer. Recently (Chemical Research in Toxicology 33(11), 2804-2818, 2020), we showed that the metabolism of AAI and AAII in Wistar rats is influenced by their co-exposure (i.e.

View Article and Find Full Text PDF

The plant extract aristolochic acid (AA), containing aristolochic acid I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy and Balkan endemic nephropathy, unique renal diseases associated with upper urothelial cancer. Differences in the metabolic activation and detoxification of AAI and AAII and their effects on the metabolism of AAI/AAII mixture in the plant extract might be of great importance for an individual's susceptibility in the development of AA-mediated nephropathies and malignancies. Here, we investigated metabolism of AAI and AAII after ip administration to Wistar rats as individual compounds and as AAI/AAII mixture using high performance liquid chromatography/electrospray ionization mass spectrometry.

View Article and Find Full Text PDF

Benzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes.

View Article and Find Full Text PDF

Abstract: The herbal drug aristolochic acid, a natural mixture of 8-methoxy-6-nitrophenanthro[3,4-]-1,3-dioxole-5-carboxylic acid (AAI) and 6-nitrophenanthro[3,4-]-1,3-dioxole-5-carboxylic acid (AAII), is derived from species and is the cause of two nephropathies. Ingestion of aristolochic acid is associated with the development of urothelial tumors linked with aristolochic acid nephropathy and is implicated in the development of Balkan endemic nephropathy-associated urothelial tumors. The -demethylated metabolite of AAI, 8-hydroxyaristolochic acid (AAIa), is the detoxification product of AAI generated by its oxidative metabolism.

View Article and Find Full Text PDF