We demonstrate high-frequency Q-switching of a fiber rod laser with a Single-Crystal Photo-Elastic Modulator (SCPEM) made of a LiTaO₃₋ crystal. This type of photo-elastic modulator can be driven simultaneously with two different eigenmodes to achieve a shorter rise time, which is essential for high-power operation. When operated in the laser cavity, a pulse repetition frequency of 183.
View Article and Find Full Text PDFPower Scaling of a Q-switched laser designed for internal frequency conversion is demonstrated by combining two Nd:YVO4-gain-channels with a time-multiplexing scheme based on a single crystal photo elastic modulator (SCPEM). Both channels are coupled with a polarizer and share an output-coupler and acousto-optic modulator (AOM). In order to combine two channels by time multiplexing, the single crystal photo elastic modulator is used which switches between two channels, while the acousto-optic modulator conducts the Q-switching.
View Article and Find Full Text PDFFor quality control in high volume manufacturing of thin layers and for tracking of physical and chemical processes, ellipsometry is a common measurement technology. For such kinds of applications we present a novel approach of fast ellipsometric measurements. Instead of a conventional setup that uses a standard photo-elastic modulator, we use a 92 kHz Single Crystal Photo-Elastic Modulator (SCPEM), which is a LiTaO3 crystal with a size of 28 × 9 × 4 mm.
View Article and Find Full Text PDFA new type of acousto-optic device based on a LiTaO(3) crystal is presented. A harmonic voltage with a proper frequency applied to the piezoelectric LiTaO(3) crystal generates mechanical oscillations in the material. Due to photoelasticity, an artificial modulated birefringence is induced by this oscillation.
View Article and Find Full Text PDFA study of using a single crystal photo-elastic modulator for active Q-switching of a fiber laser is presented. The modulator, which oscillates in a longitudinal eigenmode, was realized with LiTaO(3). This induces due to the photo-elastic effect a modulated artificial birefringence which modulates the polarization of passing light.
View Article and Find Full Text PDF