Clin Res Hepatol Gastroenterol
February 2016
By integrating network analysis and molecular modeling, a "system pharmacology" approach identified FXR as a potential off-target protein mediating non-steroidal anti-inflammatory drugs (NSAID)-induced liver injury. In vitro assays showed that NSAID are potent FXR antagonists that inhibit FXR transcriptional activity. Given the role of FXR in bile acid homeostasis, liver inflammation and cell proliferation, the data suggest that FXR antagonism could mediate, at least in part, NSAID-induced liver injury.
View Article and Find Full Text PDFDrug-induced liver injury (DILI) is the most common organ toxicity encountered in regulatory animal toxicology studies required prior to the clinical development of new drug candidates. Very few reports have evaluated the value of these studies for predicting DILI in humans. Indeed, compounds inducing liver toxicity in regulatory toxicology studies are not always correlated with a risk of DILI in humans.
View Article and Find Full Text PDFGastroenterol Clin Biol
December 2010
Two studies show that the risk of drug-induced liver injury (DILI) is increased when the daily dose of a drug given by oral route is higher than 10mg per day and/or when the drug undergoes a significant hepatic metabolism. If confirmed, these data suggest that developing drugs with high potency and low hepatic metabolism will reduce the risk of idiosyncratic DILI in man.
View Article and Find Full Text PDFAnti-cytochrome P450 (CYP)1A2 autoantibodies are found in dihydralazine-induced hepatitis, and CYPs2B and 2C have been shown to follow vesicular flow to the plasma membrane (PM). However, it is unknown whether other CYPs follow this route, whether NADPH-CYP reductase is present on the hepatocyte surface, and whether autoimmune hepatitis-inducing drugs increase PM CYPs. In this study, we determined the transmembrane topology and transport of CYPs1A in rat hepatocytes.
View Article and Find Full Text PDFTissue expression of drug-metabolizing enzymes influences susceptibility to drugs and carcinogens. Because the biliary epithelium, exposed to bile-borne chemicals, may give rise to drug-induced cholangiopathies and to cholangiocarcinomas, we determined the pattern of expression of drug-metabolizing enzymes in this epithelium. We first demonstrated by blot analyses that biliary epithelial cells (BEC) isolated from human gallbladders display cytochrome P450 (CYP) 1A, 2E1, and 3A, microsomal epoxide hydrolase (mEH), alpha, mu, and pi glutathione S-transferase (GST), transcripts and proteins.
View Article and Find Full Text PDF