Publications by authors named "F Baldaccini"

We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star-black hole, and binary black hole systems.

View Article and Find Full Text PDF
Article Synopsis
  • On May 21, 2019, Advanced LIGO and Virgo detected a significant gravitational-wave signal known as GW190521, indicating a high probability event with a low chance of false alarms.
  • The signal suggests it resulted from the merger of two black holes, one around 85 solar masses and the other about 66 solar masses, with the primary black hole likely being an intermediate mass black hole.
  • The source of the merger is estimated to be about 5.3 billion light-years away, and the rate of similar black hole mergers is estimated to be about 0.13 mergers per billion cubic parsecs per year.
View Article and Find Full Text PDF

Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the existence of subsolar mass ultracompact objects by analyzing data from Advanced LIGO's second observing run and includes the impact of spin on gravitational waves.
  • No suitable gravitational-wave candidates were found for binaries with at least one component between 0.2 and 1.0 solar masses, leading to significant constraints on their binary merger rates.
  • The findings suggest that such ultracompact objects likely do not form through conventional stellar evolution, and they outline how these constraints on merger rates can be applied to different black hole population models that predict subsolar mass binaries.
View Article and Find Full Text PDF

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime.

View Article and Find Full Text PDF