The pandemic emergency determined by the spreading worldwide of the SARS-CoV-2 virus has focused the scientific and economic efforts of the pharmaceutical industry and governments on the possibility to fight the virus by genetic immunization. The genetic material must be delivered inside the cells by means of vectors. Due to the risk of adverse or immunogenic reaction or replication connected with the more efficient viral vectors, non-viral vectors are in many cases considered as a preferred strategy for gene delivery into eukaryotic cells.
View Article and Find Full Text PDFTyrosinase is a metalloenzyme involved in o-hydroxylation of monophenols and oxidation of o-diphenols to o-quinones, with formation of brown or black pigments (melanines). Tyrosinase inhibitors are of great interest in medicine and cosmetics (skin whitening compounds), but also in food and beverage industry (antibrowning agents). Here we report on the activity as mushroom tyrosinase inhibitors of a series of hydroxyphenyl thiosemicarbazones (1-5): one of them revealed an inhibitory activity stronger than kojic acid, used as reference.
View Article and Find Full Text PDFBiological and thermodynamic properties of a new homologous series of highly fluorinated bispyridinium cationic gemini surfactants, differing in the length of the spacer bridging the pyridinium polar heads in 1,1' position, are reported for the first time. Interestingly, gene delivery ability is closely associated with the spacer length due to a structural change of the molecule in solution. This conformation change is allowed when the spacer reaches the right length, and it is suggested by the trends of the apparent and partial molar enthalpies vs molality.
View Article and Find Full Text PDFThe interaction with a model membrane, the formation of DNA nanoparticles, and the transfection ability of a homologous series of bispyridinium dihexadecyl cationic gemini surfactants, differing in the length of the alkyl spacer bridging the two pyridinium polar heads in the 1 and 1' positions (P16-n with n = 3, 4, 8, 12), have been studied by means of differential scanning calorimetry (DSC), atomic force microscopy, electrophoresis mobility shift assay, and transient transfection assay measurements. The results presented here show that their performance in gene delivery is strictly related to their structure in solution. For the first time the different transfection activities of the compounds can be explained by referring to their thermodynamic properties in solution, previously studied.
View Article and Find Full Text PDFBackground: We studied postoperative mortality and morbidity after coronary artery bypass graft surgery performed using the mini-extracorporeal circulation (MECC) system.
Methods: From June 2001 to June 2002, we randomly enrolled 60 patients who underwent isolated elective coronary artery bypass graft surgery, and were operated on with the MECC system (30 patients: group A) or standard cardiopulmonary bypass (30 patients: group B). Serial blood samples were collected to evaluate the main preoperative, intraoperative, and postoperative clinical and biological variables; and to measure hemolysis, interleukin-6 cytokine, and plasma C-reactive protein release.