Pericytes, recognized as mural cells, have long been described as components involved in blood vessel formation, playing a mere supporting role for endothelial cells (ECs). Emerging evidence strongly suggests their multifaceted roles in tissues and organs. Indeed, pericytes exhibit a remarkable ability to anticipate endothelial cell behavior and adapt their functions based on the specific cells they interact with.
View Article and Find Full Text PDFThe use of small molecules to induce targeted protein degradation is increasingly growing in the drug discovery landscape, and protein degraders have progressed rapidly through the pipelines. Despite the advances made so far, their synthesis still represents a significant burden and new approaches are highly demanded. Herein we report an unprecedented platform that leverages the modular nature of both multicomponent reactions and degraders to enable the preparation of highly decorated PROTACs.
View Article and Find Full Text PDFItal J Biochem
December 1990
T3 administration to rats exerts quite different effects on enzyme activities associated to liver microsomal membranes such as G-6-Pase, Mg ATPase and Ca2(+)-dependent ATPase: in fact G-6-Pase activity is significantly enhanced, Mg ATPase is not affected whereas Ca2(+)-dependent ATPase is drastically inhibited. The T3 induced decrease in Ca2(+)-dependent ATPase activity is associated with a net reduction (to about 50% with respect to controls) of the Ca2+ sequestration in liver microsomal vesicles. The enhanced level of inorganic phosphate in the endoplasmic reticulum due to the stimulation of G-6-Pase activity does not significantly affect the uptake of calcium in microsomal vesicles.
View Article and Find Full Text PDF