Background: Recent reports suggest increased myocardial iNOS expression leads to excessive protein -nitrosylation, contributing to the pathophysiology of HFpEF. However, the relationship between NO bioavailability, dynamic regulation of protein -nitrosylation by trans- and de-nitrosylases, and HFpEF pathophysiology has not been elucidated. Here, we provide novel insights into the delicate interplay between NO bioavailability and protein -nitrosylation in HFpEF.
View Article and Find Full Text PDFSignificance: Damage to the cardiac conduction system remains one of the most significant risks associated with surgical interventions to correct congenital heart disease. This work demonstrates how light-scattering spectroscopy (LSS) can be used to non-destructively characterize cardiac tissue regions.
Aim: To present an approach for associating tissue composition information with location-specific LSS data and further evaluate an LSS and machine learning system as a method for non-destructive tissue characterization.
Iatrogenic damage to the cardiac conduction system (CCS) remains a significant risk during congenital heart surgery. Current surgical best practice involves using superficial anatomical landmarks to locate and avoid damaging the CCS. Prior work indicates inherent variability in the anatomy of the CCS and supporting tissues.
View Article and Find Full Text PDFImportance: Surgical correction of congenital heart defects (CHDs) has improved the lifespan and quality of life of pediatric patients. The number of congenital heart surgeries (CHSs) in children has grown continuously since the 1960s. This growth has been accompanied by a rise in the incidence of postoperative heart block requiring permanent pacemaker (PPM) implantation.
View Article and Find Full Text PDFWe have previously demonstrated the importance of myofiber-collagen mechanical interactions in modeling the passive mechanical behavior of right ventricle free wall (RVFW) myocardium. To gain deeper insights into these coupling mechanisms, we developed a high-fidelity, micro-anatomically realistic 3D finite element model of right ventricle free wall (RVFW) myocardium by combining high-resolution imaging and supercomputer-based simulations. We first developed a representative tissue element (RTE) model at the sub-tissue scale by specializing the hyperelastic anisotropic structurally-based constitutive relations for myofibers and ECM collagen, and equi-biaxial and non-equibiaxial loading conditions were simulated using the open-source software FEniCS to compute the effective stress-strain response of the RTE.
View Article and Find Full Text PDF