Publications by authors named "F B Hulsbergen"

The transmembrane segments of soluble N-ethylmaleimide-sensitive factor (SNARE) proteins or viral envelope proteins drive membrane fusion, which suggests that simple synthetic biology constructs for fusion exist and can be evaluated. We describe the high-yield synthesis of a set of de novo designed fusogenic peptides for use in functional investigations, which are highly enriched in 13C and 15N using three equivalents of labelled amino acids and optimized reaction conditions minimizing aggregation. The biomimetic peptides have a high purity >90% and show reproducible and fusogenic activity that correlates well with the intended functional design characteristics, from strongly fusogenic to almost non-fusogenic.

View Article and Find Full Text PDF

This study reports the sequence specific chemical shifts assignments for 76 residues of the 94 residues containing monomeric unit of the photosynthetic light-harvesting 2 transmembrane protein complex from Rhodopseudomonas acidophila strain 10050, using Magic Angle Spinning (MAS) NMR in combination with extensive and selective biosynthetic isotope labeling methods. The sequence specific chemical shifts assignment is an essential step for structure determination by MAS NMR. Assignments have been performed on the basis of 2-dimensional proton-driven spin diffusion (13)C-(13)C correlation experiments with mixing times of 20 and 500 ms and band selective (13)C-(15)N correlation spectroscopy on a series of site-specific biosynthetically labeled samples.

View Article and Find Full Text PDF

Partly biosynthetic site-directed isotopically (13)C enriched photosynthetic light-harvesting 2(LH2) complexes have been prepared from Rhodopseudomonas acidophila strain 10050 by using chemically labeled [1,2,3,4-(13)C], [1,4-(13)C] and [2,3-(13)C] succinic acid as a precursor in the growth medium. Two-dimensional proton driven spin diffusion (PDSD) solid state NMR correlation spectroscopy has been used to trace each individual (13)C isotope from the labeled succinic acid precursor to its destination into the protein and into the embedded major light-absorbing bacteriochlorophyll cofactors. For both the residues of the protein and for the cofactors distinct labeling patterns have been deduced, for protein complexes prepared from [1,4-(13)C]-succinic acid or [2,3-(13)C]-succinic labeled media.

View Article and Find Full Text PDF