Hydrodynamic cavitation experiments in microfluidic systems have been performed with an aqueous solution of luminol as the working fluid. In order to identify where and how much reactive radical species are formed by the violent bubble collapse, the resulting chemiluminescent oxidation reaction of luminol was scrutinized downstream of a constriction in the microchannel. An original method was developed in order to map the intensity of chemiluminescence emitted from the micro-flow, allowing us to localize the region where radicals are produced.
View Article and Find Full Text PDFLuminescence and chemiluminescence have been experimentally investigated in hydrodynamic cavitating flows. By using dedicated microdevices inserted inside a light tight box, photons counting has been made possible. Luminescence has been investigated with deionized water as the working fluid; chemiluminescence has resulted from cavitating alkaline luminol solutions, and has been correlated to hydroxyl radicals formation.
View Article and Find Full Text PDFHydrodynamic cavitation 'on a chip' has been used to achieve liquid-phase exfoliation of natural graphite to get graphene. We have taken advantage of the small size of such a 'lab-on-a-chip' (LOC) with low input-power consumption, to produce afterwards few layers of graphene nanosheets in a surfactant suspension. Characterization of the processed material has been performed by TGA analysis, SEM, TEM, AFM and Raman measurements.
View Article and Find Full Text PDFWe have performed hydrodynamic cavitation experiments with an aqueous luminol solution as the working fluid. Light emission, together with the high frequency noise which characterizes cavitation, was emitted by the two-phase flow, whereas no light emission from luminol was recorded in the single phase liquid flow. Light emission occurs downstream transparent microdiaphragms.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2013
Thermosensitive fluorescent nanoparticles seeded in deionized water combined with confocal microscopy enables thermal mapping over three dimensions of the liquid phase flowing through a microchannel interrupted by a microdiaphragm. This experiment reveals the presence of a strong thermal gradient up to ~10(5) K/m only when hydrodynamic cavitation is present. Here hydrodynamic cavitation is the consequence of high shear rates downstream in the diaphragm.
View Article and Find Full Text PDF