Cell motility is a fundamental process crucial for function in many cell types, including T cells. T cell motility is critical for T cell-mediated immune responses, including initiation, activation, and effector function. While many extracellular receptors and cytoskeletal regulators have been shown to control T cell migration, relatively few signaling mediators have been identified that can modulate T cell motility.
View Article and Find Full Text PDFNaïve T cells continuously traffic to secondary lymphoid organs, including peripheral lymph nodes, to detect rare expressed antigens. The migration of T cells into lymph nodes is a complex process which involves both cellular and chemical factors including chemokines. Recently, the use of two-photon microscopy has permitted to track T cells in intact lymph nodes and to derive some quantitative information on their behavior and their interactions with other cells.
View Article and Find Full Text PDFMycolactone is a macrolide produced by Mycobacterium ulcerans with immunomodulatory properties. Here, we describe that in mouse, mycolactone injection led to a massive T-cell depletion in peripheral lymph nodes (PLNs) that was associated with defective expression of L-selectin (CD62-L). Importantly, preexposure to mycolactone impaired the capacity of T cells to reach PLNs after adoptive transfer, respond to chemotactic signals, and expand upon antigenic stimulation in vivo.
View Article and Find Full Text PDFBackground: Although evidence exists that regulatory T cells (Tregs) can suppress the effector phase of immune responses, it is clear that their major role is in suppressing T cell priming in secondary lymphoid organs. Recent experiments using two photon laser microscopy indicate that dendritic cells (DCs) are central to Treg cell function and that the in vivo mechanisms of T cell regulation are more complex than those described in vitro.
Principal Findings: Here we have sought to determine whether and how modulation of Treg numbers modifies the lymph node (LN) microenvironment.