High theoretical energy density and low cost make lithium-sulfur (LSB) batteries a promising system for next-generation energy storage. LSB performance largely depends on efficient reversible conversion of elemental sulfur to LiS. Here, well-designed sulfur host materials including Fe or Co single atoms embedded on N-doped reduced graphene oxide (MNC/G with M = Fe or Co) are proposed to tackle the LSB challenges and enhance the electrochemical performance.
View Article and Find Full Text PDFSolutions made of tetraglyme (G4) containing Ca(TFSI) have been studied as models to understand the solvation structure and the conductivity properties of multivalent ions in low dielectric constant ethereal electrolytes. These solutions have been characterised using electrochemical impedance spectroscopy, rheological measurement, and Raman spectroscopy. The ionic conductivity of these electrolytes shows an intriguing non-monotonic behaviour with temperature which deviates from the semi-empirical Vogel-Tammann-Fulcher equation at a critical temperature.
View Article and Find Full Text PDFThe membrane is a crucial component of Zn slurry-air flow battery since it provides ionic conductivity between the electrodes while avoiding the mixing of the two compartments. Herein, six commercial membranes (Cellophane™ 350PØØ, Zirfon, Fumatech PBI, Celgard 3501, 3401 and 5550) were first characterized in terms of electrolyte uptake, ion conductivity and zincate ion crossover, and tested in Zn slurry-air flow battery. The peak power density of the battery employing the membranes was found to depend on the in-situ cell resistance.
View Article and Find Full Text PDFFlexible cross-linked anion exchange membranes (AEMs) based on poly (-phenylene oxide) grafted with -spirocyclic quaternary ammonium cations were synthesized via UV-induced free-radical polymerization by using diallylpiperidinium chloride as an ionic monomer. Five membranes with ion exchange capacity (IEC) varying between 1.5 to 2.
View Article and Find Full Text PDF