Publications by authors named "F Albornoz"

Greenhouse vegetable production is often associated with the excessive use of nitrogen fertilizers and a high rate of nitrate accumulation. We evaluated the uptake, translocation, and accumulation of nitrate in chard and spinach under greenhouse conditions with optimal fertilization. The results revealed low levels of nitrate in the leachates and substrates (chard ˃ spinach).

View Article and Find Full Text PDF

Background: Arbuscular mycorrhizas (AM) are the most widespread terrestrial symbiosis and are both a key determinant of plant health and a major contributor to ecosystem processes through their role in biogeochemical cycling. Until recently, it was assumed that the fungi which form AM comprise the subphylum Glomeromycotina (G-AMF), and our understanding of the diversity and ecosystem roles of AM is based almost exclusively on this group. However recent evidence shows that fungi which form the distinctive 'fine root endophyte' (FRE) AM morphotype are members of the subphylum Mucoromycotina (M-AMF), so that AM symbioses are actually formed by two distinct groups of fungi.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes soil fungal diversity globally by examining over 4,000 topsoil samples from various ecosystems, revealing how different environmental factors influence fungal communities.
  • It demonstrates the effects of temperature and precipitation on local species richness (alpha diversity) and how these factors contribute to variations in fungal composition and evolutionary relationships (beta and phylogenetic diversity).
  • The research integrates fungal diversity into global biodiversity frameworks, providing maps and insights that can aid in conservation efforts and ecological studies worldwide.
View Article and Find Full Text PDF

Current literature suggests ecological niche differentiation between co-occurring Mucoromycotinian arbuscular mycorrhizal fungi (M-AMF) and Glomeromycotinian AMF (G-AMF), but experimental evidence is limited. We investigated the influence of soil age, water availability (wet and dry), and plant species (native Microlaena stipoides and exotic Trifolium subterraneum) on anatomical root colonisation and DNA profiles of M-AMF and G-AMF under glasshouse conditions. We grew seedlings of each species in soils collected from the four stages of a soil chronosequence, where pH decreases from the youngest to oldest stages, and phosphorus (P) is low in the youngest and oldest, but high in the intermediate stages.

View Article and Find Full Text PDF