Publications by authors named "F Aboul-Ela"

The utilization of human cDNA libraries in yeast genetic screens is an approach that has been used to identify novel gene functions and/or genetic and physical interaction partners through forward genetics using yeast two-hybrid (Y2H) and classical cDNA library screens. Here, we summarize several challenges that have been observed during the implementation of human cDNA library screens in Saccharomyces cerevisiae (budding yeast). Upon the utilization of DNA repair deficient-yeast strains to identify novel genes that rescue the toxic effect of DNA-damage inducing drugs, we have observed a wide range of transcripts that could rescue the strains.

View Article and Find Full Text PDF

The effects of ligand binding on biomolecular conformation are crucial in drug design, enzyme mechanisms, the regulation of gene expression, and other biological processes. Descriptive models such as "lock and key", "induced fit", and "conformation selection" are common ways to interpret such interactions. Another historical model, linked equilibria, proposes that the free-energy landscape (FEL) is perturbed by the addition of ligand binding energy for the bound population of biomolecules.

View Article and Find Full Text PDF

Noncoding RNAs (ncRNAs) comprise a class of versatile transcripts that are highly involved in the regulation of a wide range of biological processes. Functional long ncRNAs (> 200 nts in length) often adopt secondary structures that arise co-transcriptionally. To maintain the secondary structure elements as well as preparation homogeneity of such transcripts, native-like conditions should be maintained throughout the synthesis, purification and chemical tagging processes.

View Article and Find Full Text PDF

The realization that noncoding RNA is implicated in numerous cellular processes, makes it imperative to understand and predict RNA-folding. RNA secondary structure prediction is more tractable than tertiary structure or protein structure. Yet insights into RNA structure-function relationships are complicated by coupling between RNA-folding and ligand-binding.

View Article and Find Full Text PDF

The power of riboswitches in regulation of bacterial metabolism derives from coupling of two characteristics: recognition and folding. Riboswitches contain aptamers, which function as biosensors. Upon detection of the signaling molecule, the riboswitch transduces the signal into a genetic decision.

View Article and Find Full Text PDF