Publications by authors named "F A van Goor"

Background: Highly effective CFTR modulators improve CFTR function and lead to dramatic improvements in health outcomes in many people with cystic fibrosis (pwCF). The relationship between measures of CFTR function, such as sweat chloride concentration, and clinical outcomes in pwCF treated with CFTR modulators is poorly defined. We conducted analyses to better understand the relationships between sweat chloride and CFTR function in vitro, and between sweat chloride and clinical outcomes following CFTR modulator treatment.

View Article and Find Full Text PDF

Background: Elexacaftor-tezacaftor-ivacaftor has been shown to be safe and efficacious in people with cystic fibrosis and at least one F508del allele. Our aim was to identify a novel cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination capable of further increasing CFTR-mediated chloride transport, with the potential for once-daily dosing.

Methods: We conducted two phase 2 clinical trials to assess the safety and efficacy of a once-daily combination of vanzacaftor-tezacaftor-deutivacaftor in participants with cystic fibrosis who were aged 18 years or older.

View Article and Find Full Text PDF

In previous work, participants with a G970R mutation in cystic fibrosis transmembrane conductance regulator (CFTR) (c.2908G>C) had numerically lower sweat chloride responses during ivacaftor treatment than participants with other CFTR gating mutations. The objective of this substudy was to characterize the molecular defect of the G970R mutation in vitro and assess the benefit of ivacaftor in participants with this mutation.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a multiorgan disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (). In patients with CF, abnormalities initiate in several organs before birth. However, the long-term impact of these in utero pathologies on disease pathophysiology is unclear.

View Article and Find Full Text PDF

Background: The next-generation cystic fibrosis transmembrane conductance regulator (CFTR) corrector VX-659, in triple combination with tezacaftor and ivacaftor (VX-659-tezacaftor-ivacaftor), was developed to restore the function of Phe508del CFTR protein in patients with cystic fibrosis.

Methods: We evaluated the effects of VX-659-tezacaftor-ivacaftor on the processing, trafficking, and function of Phe508del CFTR protein using human bronchial epithelial cells. A range of oral VX-659-tezacaftor-ivacaftor doses in triple combination were then evaluated in randomized, controlled, double-blind, multicenter trials involving patients with cystic fibrosis who were heterozygous for the Phe508del CFTR mutation and a minimal-function CFTR mutation (Phe508del-MF genotypes) or homozygous for the Phe508del CFTR mutation (Phe508del-Phe508del genotype).

View Article and Find Full Text PDF