The ever-increasing antigenic diversity of the hemagglutinin (HA) of influenza A virus (IAV) poses a significant challenge for effective vaccine development. Notably, the matrix protein 2 (M2) is a highly conserved 97 amino acid long transmembrane tetrameric protein present in the envelope of IAV. More than 99 % of IAV strains circulating in American swine herds share the identical pandemic (pdm) isoform of M2, making it an ideal target antigen for a vaccine that could elicit broadly protective immunity.
View Article and Find Full Text PDFInfluenza A Virus in swine (IAV-S) is a zoonotic pathogen that is nearly ubiquitous in commercial swine in the USA. Swine possess sialic acid receptors that allow co-infection of human and avian viruses with the potential of pandemic reassortment. We aimed to develop a fast and robust testing method for IAV-S detection on swine farms.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/β) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease.
View Article and Find Full Text PDFPoint-of-care diagnostic technologies are becoming more widely available for production species. Here, we describe the application of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect the matrix (M) gene of influenza A virus in swine (IAV-S). M-specific LAMP primers were designed based on M gene sequences from IAV-S isolated in the USA between 2017 and 2020.
View Article and Find Full Text PDFViral respiratory infections predispose lungs to bacterial coinfections causing a worse outcome than either infection alone. Porcine reproductive and respiratory syndrome virus (PRRSV) causes pneumonia in pigs and is often associated with bacterial coinfections. We examined the impact of providing weanling pigs a -based direct-fed microbial (DFM) on the syndrome resulting from infection with either Salmonella enterica serotype Choleraesuis alone, or in combination with PRRSV.
View Article and Find Full Text PDF