Reducing methane (CH) emissions from agriculture, among other sectors, is a key step to reducing global warming. There are many strategies to reduce CH emissions in ruminant animals, including genetic selection, which yields cumulative and permanent genetic gains over generations. A single-step genomic evaluation for methane efficiency (MEF) was officially implemented in April 2023 for the Canadian Holstein breed, aiming to reduce CH emissions without affecting production levels.
View Article and Find Full Text PDFBackground: Structural variants (SVs) such as deletions, duplications, and insertions are known to contribute to phenotypic variation but remain challenging to identify and genotype. A more complete, accessible, and assessable collection of SVs will assist efforts to study SV function in cattle and to incorporate SV genotyping into animal evaluation.
Results: In this work we produced a large and deeply characterized collection of SVs in Holstein cattle using two popular SV callers (Manta and Smoove) and publicly available Illumina whole-genome sequence (WGS) read sets from 310 samples (290 male, 20 female, mean 20X coverage).