Publications by authors named "F A Poelwijk"

Three billion years of evolution has produced a tremendous diversity of protein molecules, but the full potential of proteins is likely to be much greater. Accessing this potential has been challenging for both computation and experiments because the space of possible protein molecules is much larger than the space of those likely to have functions. Here we introduce Chroma, a generative model for proteins and protein complexes that can directly sample novel protein structures and sequences, and that can be conditioned to steer the generative process towards desired properties and functions.

View Article and Find Full Text PDF

Gene regulation networks allow organisms to adapt to diverse environmental niches. However, the constraints underlying the evolution of gene regulation remain ill defined. Here, we show that partial order-a concept that ranks network output levels as a function of different input signals-identifies such constraints.

View Article and Find Full Text PDF

The limits of evolution have long fascinated biologists. However, the causes of evolutionary constraint have remained elusive due to a poor mechanistic understanding of studied phenotypes. Recently, a range of innovative approaches have leveraged mechanistic information on regulatory networks and cellular biology.

View Article and Find Full Text PDF

Natural evolution encodes rich information about the structure and function of biomolecules in the genetic record. Previously, statistical analysis of co-variation patterns in natural protein families has enabled the accurate computation of 3D structures. Here, we explored generating similar information by experimental evolution, starting from a single gene and performing multiple cycles of in vitro mutagenesis and functional selection in Escherichia coli.

View Article and Find Full Text PDF

Understanding the pattern of epistasis-the non-independence of mutations-is critical for relating genotype and phenotype. However, the combinatorial complexity of potential epistatic interactions has severely limited the analysis of this problem. Using new mutational approaches, we report a comprehensive experimental study of all 2 mutants that link two phenotypically distinct variants of the Entacmaea quadricolor fluorescent protein-an opportunity to examine epistasis up to the 13 order.

View Article and Find Full Text PDF