Proc SPIE Int Soc Opt Eng
February 2020
During prostate cancer progression, cancerous epithelial cells can undergo epithelial-mesenchymal transition (EMT). EMT is a crucial mechanism for the invasion and metastasis of epithelial tumors characterized by the loss of cell-cell adhesion and increased cell mobility. It is associated with biochemical changes such as epithelial cell markers E-cadherin and occludins being down-regulated, and mesenchymal markers vimentin and N-cadherin being upregulated.
View Article and Find Full Text PDFNanoscale metal-organic framework (nMOF) is a distinctive type of crystalline compounds that consists of metal ions or clusters coordinated to organic ligands. This hybrid material has attracted fast-growing attention due to its tunable pore sizes, remarkably large surface areas, and high selectivity in uptaking small molecules. In this paper, we successfully developed a novel approach for synthesizing a core-shell structure with MIL-88B-4CH as a tunable nMOF shell and MnFeO as a magnetic core.
View Article and Find Full Text PDFTissue Eng Part B Rev
February 2020
Several imaging modalities are available for investigation of the morphological, functional, and molecular features of engineered tissues in small animal models. While research in tissue engineering and regenerative medicine (TERM) would benefit from a comprehensive longitudinal analysis of new strategies, researchers have not always applied the most advanced methods. Photoacoustic imaging (PAI) is a rapidly emerging modality that has received significant attention due to its ability to exploit the strong endogenous contrast of optical methods with the high spatial resolution of ultrasound methods.
View Article and Find Full Text PDFThe current clinical standard for mass screening of prostate cancer are prostate-specific antigen (PSA) biomarker assays. Unfortunately, the low specificity of PSA's bioassays to prostate cancer leads to high false-positive rates, as such there is an urgent need for the development of a more specific detection system independent of PSA levels. In our previous research, we have successfully demonstrated, with the use of our Photonic-Crystal based biosensor in a Total-Internal-Reflection (PC-TIR) configuration, detection of prostate cancer (PC-3) cells against benign prostate hyperplasia (BPH-1) cells.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2018
Prostate-specific antigen (PSA) biomarker assays are the current clinical method for mass screening of prostate cancer. However, high false-positive rates are often reported due to PSA's low specificity, leading to an urgent need for the development of a more specific detection system independent of PSA levels. In our previous research, we demonstrated the feasibility of using cellular refractive indices (RI) as a unique contrast parameter to accomplish label-free detection of prostate cancer cells via variance testing, but were unable to determine if a specific cell was cancerous or noncancerous.
View Article and Find Full Text PDF