Publications by authors named "F A Chaillan"

Loss of vestibular function is known to cause spatial memory deficits and hippocampal dysfunction, in terms of impaired place cell firing and abnormal theta rhythm. Based on these results, it has been of interest to determine whether vestibular loss also affects the development and maintenance of long-term potentiation (LTP) in the hippocampus. This article summarizes and critically reviews the studies of hippocampal LTP following a vestibular loss and its relationship to NMDA receptor expression, that have been published to date.

View Article and Find Full Text PDF

When facing a choice at a decision point in a maze, rats often display hesitations, pauses and reorientations. Such "vicarious trial and error" (VTE) behavior is thought to reflect decision making about which choice option is best, and thus a deliberation process. Although deliberation relies on a wide neural network, the dorsal hippocampus appears to play a prominent role through both its neural activity and its dynamic interplay with other brain areas.

View Article and Find Full Text PDF

Vestibular dysfunction strongly impairs hippocampus-dependent spatial memory performance and place cell function. However, the hippocampal encoding of vestibular information at the synaptic level, remains sparsely explored and controversial. We investigated changes in in vivo long-term potentiation (LTP) and NMDA glutamate receptor (NMDAr) density and distribution after bilateral vestibular lesions (BVL) in adult rats.

View Article and Find Full Text PDF

Excitotoxic lesions are frequently used to assess the role of cerebral structures in cognitive processes in rodents. However, the precise site and extent of these lesions remain unknown without histological verifications. Using a 7-Teslas MRI system and a T2-weighted turbo-RARE sequence, MR images were acquired at several time points following NMDA lesions (1h, 6h, 24h, 48h, 1 week and 2 weeks).

View Article and Find Full Text PDF

The reuniens (Re) and rhomboid (Rh) nuclei of the ventral midline thalamus are reciprocally connected with the hippocampus (Hip) and the medial prefrontal cortex (mPFC). Growing evidence suggests that these nuclei might play a crucial role in cognitive processes requiring Hip-mPFC interactions, including spatial navigation. Here, we tested the effect of ReRh lesions on the firing properties and spatial activity of dorsal hippocampal CA1 place cells as male rats explored a familiar or a novel environment.

View Article and Find Full Text PDF