The environmental mobility of Cu and therefore its potential toxicity are closely linked to its attachment to natural organic matter (NOM). Geochemical models assume full lability of metals bound to NOM, especially under strong oxidizing conditions, which often leads to an overestimation of the lability of soil metals. Stable isotope dilution (SID) has been successfully applied to estimate the labile (isotopically exchangeable) pool of soil metals.
View Article and Find Full Text PDFThe aim of this work was to assess the origins, mobility, bioavailability and potential health risks of V, Cr, Co, As, Se, Mo, Cd, Sn and Sb, which are not sufficiently studied in the terrestrial environment of Egypt. This has been carried out by employing a combination of chemical fractionation, plants uptake, mathematical modeling and risk assessment approaches on a wide range of soils and plants sampled from industrial, urban and agricultural locations across Egypt. The contents of As, Cd, Sn and Sb were elevated in the soils of some urban and industrial locations within Cairo, although their soil geo-accumulation (I) indices remained ≤ 2, indicating only moderate contamination.
View Article and Find Full Text PDFWith the growing availability and use of copper-based nanomaterials (Cu-NMs), there is increasing concern regarding their release and potential impact on the environment. In this study, the short-term (≤5 d) aging profile and the long-term (135 d) speciation of dissolved Cu, copper oxide, and copper sulfide nanoparticles (CuO-NPs and CuS-NPs) were investigated in five different soils using X-ray absorption spectroscopy. Soil pH was found to strongly influence the short-term chemistry of the Cu-NMs added at 100 mg kg above background.
View Article and Find Full Text PDFHere, we evaluate the extent of sorption of silver nanoparticles (AgNPs) with different primary sizes (30 and 70 nm) and surface properties (branched polyethylene imine, "bPEI" and citrate coating) to laboratory plastic during (eco)toxicological testing. Under conditions of algal growth inhibition assay, up to 97% of the added AgNPs were sorbed onto the test vessels whereas under conditions of in vitro toxicological assay with mammalian cells, the maximum loss of AgNPs was 15%. We propose that the high concentration of proteins and biomolecules in the in vitro toxicological assay originating from serum-containing cell culture medium prevented NP sorption due to steric stabilisation.
View Article and Find Full Text PDFAdvanced biosensors in future medicine hinge on the evolvement of biomaterials. Porous silicon (pSi), a generally biodegradable and biocompatible material that can be fabricated to include environment-responsive optical characteristics, is an excellent candidate for in vivo biosensors. However, the feasibility of using this material as a subcutaneously implanted optical biosensor has never been demonstrated.
View Article and Find Full Text PDF