Publications by authors named "Ezra Wiater"

Article Synopsis
  • * The study reveals that a high-fat diet activates the CREB/CRTC pathway in fat cells by lowering SIK2, which normally suppresses these pathways, and is influenced by the obesity-related factor C/EBPα.
  • * Targeting CRTC2/3 in fat cells can improve insulin sensitivity and reduce harmful chemokines, suggesting that the CREB/CRTC pathway plays a key role in how fat tissue affects metabolism.
View Article and Find Full Text PDF

Fasting in mammals promotes increases in circulating glucagon and decreases in circulating insulin that stimulate catabolic programs and facilitate a transition from glucose to lipid burning. The second messenger cAMP mediates effects of glucagon on fasting metabolism, in part by promoting the phosphorylation of CREB and the dephosphorylation of the cAMP-regulated transcriptional coactivators (CRTCs) in hepatocytes. In , fasting also triggers activation of the single Crtc homolog in neurons, via the PKA-mediated phosphorylation and inhibition of salt-inducible kinases.

View Article and Find Full Text PDF

The LKB1 tumor suppressor is often mutationally inactivated in non-small cell lung cancer (NSCLC). LKB1 phosphorylates and activates members of the AMPK family of Ser/Thr kinases. Within this family, the salt-inducible kinases (SIKs) modulate gene expression in part via the inhibitory phosphorylation of the CRTCs, coactivators for CREB (cAMP response element-binding protein).

View Article and Find Full Text PDF

CREB mediates effects of cyclic AMP on cellular gene expression. Ubiquitous CREB target genes are induced following recruitment of CREB and its coactivators to promoter proximal binding sites. We found that CREB stimulates the expression of pancreatic beta cell-specific genes by targeting CBP/p300 to promoter-distal enhancer regions.

View Article and Find Full Text PDF

In response to cold exposure, placental mammals maintain body temperature by increasing sympathetic nerve activity in brown adipose tissue (BAT). Triggering of β-adrenergic receptors on brown adipocytes stimulates thermogenesis via induction of the cAMP/PKA pathway. Although cAMP response element-binding protein (CREB) and its coactivators-the cAMP-regulated transcriptional coactivators (CRTCs)-mediate transcriptional effects of cAMP in most tissues, other transcription factors such as ATF2 appear critical for induction of thermogenic genes by cAMP in BAT.

View Article and Find Full Text PDF

Populations of circulating immune cells are maintained in equilibrium through signals that enhance the retention or egress of hematopoietic stem cells (HSCs) from bone marrow (BM). Prostaglandin E2 (PGE2) stimulates HSC renewal and engraftment through, for example, induction of the cAMP pathway. Triggering of PGE2 receptors increases HSC survival in part via the PKA-mediated induction of the cAMP response element-binding protein (CREB) signaling pathway.

View Article and Find Full Text PDF

The transforming growth factor-beta (TGF-β) superfamily of ligands have been recognized as important signals in vertebrate embryonic development from the blastula stage to adulthood. In addition to roles in early development, TGF-β superfamily ligands, and particularly activin family ligands, are involved in specification, differentiation, and proliferation of multiple organ systems, including the pancreas. More recently, research has suggested that activin family ligands, binding proteins, receptors, and Smad signal transducers and modulators are involved in regulating adult pancreatic function and maintaining pancreatic islet homeostasis in the adult.

View Article and Find Full Text PDF

Activins are multifunctional proteins and members of the TGF-β superfamily. Activins are expressed locally in most tissues and, analogous to the actions of other members of this large family of pleiotropic factors, play prominent roles in the regulation of diverse biological processes in both differentiated and embryonic stem cells. They have an essential role in maintaining tissue homeostasis in the adult and are known to contribute to the developmental programs in the embryo.

View Article and Find Full Text PDF

Inhibin is an atypical member of the TGFbeta family of signaling ligands and is classically understood to function via competitive antagonism of activin ligand binding. Inhibin-null (Inha-/-) mice develop both gonadal and adrenocortical tumors, the latter of which depend upon gonadectomy for initiation. We have previously shown that gonadectomy initiates adrenal tumorigenesis in Inha-/- mice by elevating production of LH, which drives aberrant proliferation and differentiation of subcapsular adrenocortical progenitor cells.

View Article and Find Full Text PDF

Inhibins are endocrine hormones that regulate gametogenesis and reproduction through a negative feedback loop with FSH. Inhibin action involves antagonism of signaling by activin or other TGFbeta family ligands. In transfection assays, antagonism by inhibin can be potentiated by betaglycan, a coreceptor for selected TGFbeta family ligands.

View Article and Find Full Text PDF

Myostatin, a member of the TGF-beta superfamily of proteins, is known to suppress skeletal muscle mass and myocyte proliferation. The muscular component of the uterus is the myometrium, a tissue that regulates its mass in response to different physiological conditions under the influence of sex steroids. Recently, our laboratory reported effects of activin-A, another TGF-beta family member, on signalling and proliferation of rat uterine explants and human myometrial cell lines in culture.

View Article and Find Full Text PDF

Activin is a pleiotropic growth factor with a broad pattern of tissue distribution that includes reproductive tissues. Although direct actions of activin have been described in gonadal and uterine tissues, actions in the myometrium have not been defined. In this study we have characterized the responsiveness of uterine tissue and myometrial cell lines to activin-A.

View Article and Find Full Text PDF

Betaglycan is a co-receptor that mediates signaling by transforming growth factor beta (TGFbeta) superfamily members, including the distinct and often opposed actions of TGFbetas and inhibins. Loss of betaglycan expression, or abrogation of betaglycan function, is implicated in several human and animal diseases, although both betaglycan actions and the ligands involved in these disease states remain unclear. Here we identify a domain spanning amino acids 591-700 of the betaglycan extracellular domain as the only inhibin-binding region in betaglycan.

View Article and Find Full Text PDF

Activins and inhibins, which were discovered by virtue of their abilities to stimulate or inhibit, respectively, the secretion of FSH, are members of the transforming growth factor-beta (TGFbeta) superfamily and exert a broad range of effects on the diffentiation, proliferation and functions of numerous cell types. Activins interact with two structurally related classes of serine/threonine kinase receptors (type I and type II). Inhibin antagonizes activin by binding to the proteoglycan, betaglycan, and forming a stable complex with and, thereby, sequestering type II activin receptors while excluding type I receptors.

View Article and Find Full Text PDF

Activins and bone morphogenetic proteins (BMPs) elicit diverse biological responses by signaling through two pairs of structurally related types I and II receptors. Here, we summarize recent advances in understanding the mode of action of activins and BMPs, focusing on our elucidation of the crystal structure of BMP-7 in complex with the extracellular domain (ECD) of the activin type II receptor and our identification of a binding site for activin on the type I receptor ALK4. As a consequence of the broad range of activities of activins and BMPs, it is perhaps not surprising that additional mechanisms are continually being discovered through which a cell's responsiveness to these ligands is modulated.

View Article and Find Full Text PDF

Under normal physiologic conditions, liver size is under strict regulatory control. Activin, a member of the transforming growth factor beta (TGF-beta) superfamily, is expressed in the intact adult liver and is an inhibitor of hepatocyte growth. However, the exact role played by endogenous activin in maintaining the size of a normal adult liver has yet to be completely examined in vivo.

View Article and Find Full Text PDF

Background: The activity of bone morphogenetic proteins (BMPs) is regulated extracellularly by several families of secreted, negatively-acting factors. These BMP antagonists participate in the control of a diverse range of embryonic processes, such as establishment of the dorsal-ventral axis, neural induction, and formation of joints in the developing skeletal system. The ongoing process of neurogenesis in the adult brain also requires inhibition of BMP ligand activity.

View Article and Find Full Text PDF

Activins and bone morphogenetic proteins (BMPs) elicit diverse biological responses by signaling through two pairs of structurally related type I and type II receptors. Here we report the crystal structure of BMP7 in complex with the extracellular domain (ECD) of the activin type II receptor. Our structure produces a compelling four-receptor model, revealing that the types I and II receptor ECDs make no direct contacts.

View Article and Find Full Text PDF

Inhibins are endogenous antagonists of activin signaling, long recognized as important regulators of gonadal function and pituitary FSH release. Inhibin, in concert with its co-receptor, betaglycan, can compete with activin for binding to type II activin receptors and, thus, prevent activin signaling. Because bone morphogenetic proteins (BMPs) also utilize type II activin receptors, we hypothesized that BMP signaling might also be sensitive to inhibin blockade.

View Article and Find Full Text PDF

The interplay between bone morphogenetic proteins (BMPs) and their antagonists governs developmental and cellular processes as diverse as establishment of the embryonic dorsal-ventral axis, induction of neural tissue, formation of joints in the skeletal system and neurogenesis in the adult brain. So far, the three-dimensional structures of BMP antagonists and the structural basis for inactivation have remained unknown. Here we report the crystal structure of the antagonist Noggin bound to BMP-7, which shows that Noggin inhibits BMP signalling by blocking the molecular interfaces of the binding epitopes for both type I and type II receptors.

View Article and Find Full Text PDF