Publications by authors named "Ezra G Schwartzberg"

Climate change and insect outbreaks are key factors contributing to regional and global patterns of increased tree mortality. While links between these environmental stressors have been established, our understanding of the mechanisms by which elevated temperature may affect tree-insect interactions is limited. Using a forest warming mesocosm, we investigated the influence of elevated temperature on phytochemistry, tree resistance traits, and insect performance.

View Article and Find Full Text PDF

As the world's climate warms, the phenologies of interacting organisms in seasonally cold environments may advance at differing rates, leading to alterations in phenological synchrony that can have important ecological consequences. For temperate and boreal species, the timing of early spring development plays a key role in plant-herbivore interactions and can influence insect performance, outbreak dynamics, and plant damage. We used a field-based, meso-scale free-air forest warming experiment (B4WarmED) to examine the effects of elevated temperature on the phenology and performance of forest tent caterpillar (Malacosoma disstria) in relation to the phenology of two host trees, aspen (Populus tremuloides) and birch (Betula papyrifera).

View Article and Find Full Text PDF

In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies.

View Article and Find Full Text PDF

Plants defend themselves against herbivory through several means, including the production of airborne volatile organic compounds (VOCs). These VOCs benefit plants by attracting natural enemies of their herbivores. The pea aphid, Acyrthosiphon pisum, is able to feed on its host plant, Vicia faba, without inducing detectable changes in plant VOC emission.

View Article and Find Full Text PDF

The cuticular wax structures of Scymnus louisianae J. Chapin larvae were investigated as a defense against ant aggression by Lasius neoniger Emery. The presence of wax structures provided significant defense against ant aggression compared with denuded larvae in that these structures attenuated the aggressive behavior of foraging ants.

View Article and Find Full Text PDF

Pea aphids, Acyrthosiphon pisum, reproduce parthenogenetically and are wing-dimorphic such that offspring can develop into winged (alate) or unwinged (apterous) adults. Alate induction is maternal and offspring phenotype is entirely determined by changes in the physiology and environment of the mother. Juvenile hormones (JHs) have been implicated in playing a role in wing differentiation in aphids, however until recently, methods were not available to accurately quantify these insect hormones in small insects such as aphids.

View Article and Find Full Text PDF

Upon attack by predators or parasitoids, aphids emit volatile chemical alarm signals that warn other aphids of a potential risk of predation. Release rate of the major constituent of the alarm pheromone in pea aphids (Acyrthosiphon pisum), (E)-b-farnesene (EBF), was measured for all nymphal and the adult stage as aphids were attacked individually by lacewing (Chrysoperla carnae) larvae. Volatilization of EBF from aphids under attack was quantified continuously for 60 min at 2-min intervals with a rapid gas chromatography technique (zNose) to monitor headspace emissions.

View Article and Find Full Text PDF