Publications by authors named "Ezgi Ozturk"

Objective: Many people with epilepsy experience comorbid anxiety and depression, and antidepressants remain a primary treatment for this. Emerging evidence suggests that these agents may modulate epileptogenesis to influence disease severity. Here, we assessed how treatment with the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine impacts epileptogenic, behavioral, and pathological sequelae following status epilepticus.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase.

View Article and Find Full Text PDF

Multiple sclerosis (MS) can progress with neurodegeneration as a consequence of chronic inflammatory mechanisms that drive neural cell loss and/or neuroaxonal dystrophy in the central nervous system. Immune-mediated mechanisms can accumulate myelin debris in the disease extracellular milieu during chronic-active demyelination that can limit neurorepair/plasticity and experimental evidence suggests that potentiated removal of myelin debris can promote neurorepair in models of MS. The myelin-associated inhibitory factors (MAIFs) are integral contributors to neurodegenerative processes in models of trauma and experimental MS-like disease that can be targeted to promote neurorepair.

View Article and Find Full Text PDF

Objective: Stress is one of the most commonly reported triggers for seizures in patients with epilepsy, although the mechanisms that mediate this effect are not established. The clinical evidence supporting this is derived from patients' subjective experience of stress, and how this influences their own seizures. Animal models can be used to explore this phenomenon in controlled environments, free from subjective bias.

View Article and Find Full Text PDF

Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2).

View Article and Find Full Text PDF

Objective: Early life stressors are well-established risk factors for psychiatric disorders, and evidence also suggests that these promote vulnerability to epilepsy. Given the high prevalence of psychiatric disorders in epilepsy, early life stress may represent a common driver for these comorbidities. We used animal modelling to investigate the effects of early life stress on epileptogenesis and depressive behaviors, also exploring HPA axis programming as a potential associative mechanism.

View Article and Find Full Text PDF

Objective: Cognitive deficits are commonly observed in people with epilepsy, but the biologic causation of these is challenging to identify. Animal models of epilepsy can be used to explore pathophysiologic mechanisms leading to cognitive problems, as well as to test novel therapeutics. We utilized a well-validated animal model of epilepsy to explore cognitive deficits using novel translational assessment tools/automated rodent touchscreen assays.

View Article and Find Full Text PDF

High mobility group box protein-1 (HMGB1) has been implicated as a key mediator of neuroinflammation and neurodegeneration in a range of neurological conditions including traumatic brain injury (TBI) and epilepsy. To date, however, most studies have examined only acute outcomes, and the adult brain. We have recently demonstrated HMGB1 release after experimental TBI in the pediatric mouse.

View Article and Find Full Text PDF

Patients with epilepsy often have mood disorders, and these are commonly treated with antidepressant drugs. Although these drugs are often successful in mitigating depressive symptoms, how they affect the epileptogenic processes has been little studied. Recent evidence has demonstrated that treatment with selective serotonin reuptake inhibitor (SSRI) antidepressant drugs adversely promotes epileptogenesis, which may be of great concern considering the number of patients exposed to these drugs.

View Article and Find Full Text PDF

Objective: To determine whether the R183Q mutation is present in the cases of Sturge-Weber syndrome (SWS) to establish a definitive molecular diagnosis.

Methods: We used sensitive droplet digital PCR (ddPCR) to detect and quantify the mutation in tissues from epilepsy surgery in 4 patients with leptomeningeal angiomatosis; none had ocular or cutaneous manifestations.

Results: Low levels of the mutation were detected in the brain tissue of all 4 cases-ranging from 0.

View Article and Find Full Text PDF

Somatic mutation of the lissencephaly-1 gene is a cause of subcortical band heterotopia ("double cortex"). The severity of the phenotype depends on the level of mutation in brain tissue. Detecting and quantifying low-level somatic mosaic mutations is challenging.

View Article and Find Full Text PDF

The Aristaless-related homeobox gene (ARX) is a known intellectual disability (ID) gene that frequently presents with X-linked infantile spasm syndrome as a comorbidity. ID with epilepsy in children is a chronic and devastating disorder that has poor treatment options and disease outcomes. To gain a better understanding of the role that mutations in ARX play in ID and epilepsy, we investigate ARX patient mutations modelled in mice.

View Article and Find Full Text PDF

Despite their abundance, the molecular functions of long non-coding RNAs in mammalian nervous systems remain poorly understood. Here we show that the long non-coding RNA, NEAT1, directly modulates neuronal excitability and is associated with pathological seizure states. Specifically, NEAT1 is dynamically regulated by neuronal activity in vitro and in vivo, binds epilepsy-associated potassium channel-interacting proteins including KCNAB2 and KCNIP1, and induces a neuronal hyper-potentiation phenotype in iPSC-derived human cortical neurons following antisense oligonucleotide knockdown.

View Article and Find Full Text PDF

Hypothalamic hamartoma (HH) with gelastic epilepsy is a well-recognized drug-resistant epilepsy syndrome of early life.(1) Surgical resection allows limited access to the small deep-seated lesions that cause the disease. Here, we report the results of a search for somatic mutations in paired hamartoma- and leukocyte-derived DNA samples from 38 individuals which we conducted by using whole-exome sequencing (WES), chromosomal microarray (CMA), and targeted resequencing (TRS) of candidate genes.

View Article and Find Full Text PDF

Introduction: The absence epilepsies are presumed to be caused by genetic factors, but the influence of environmental exposures on epilepsy development and severity, and whether this influence is transmitted to subsequent generations, is not well known. We assessed the effects of environmental enrichment on epilepsy and anxiety outcomes in multiple generations of GAERS - a genetic rat model of absence epilepsy that manifests comorbid elevated anxiety-like behaviour.

Methods: GAERS were exposed to environmental enrichment or standard housing beginning either prior to, or after epilepsy onset, and underwent EEG recordings and anxiety testing.

View Article and Find Full Text PDF

Objective: Environmental exposures impart powerful effects on vulnerability to many brain diseases, including epilepsy. Mesial temporal lobe epilepsy (MTLE) is a common form of epilepsy, and it is often accompanied by neuropsychiatric comorbidities. This study tests the hypothesis that environmental enrichment (EE) confers antiepileptogenic, psychoprotective, and neuroprotective effects in the amygdala kindling model of MTLE, and explores potential neurobiologic mechanisms.

View Article and Find Full Text PDF

Background: Repeated mild traumatic brain injuries, such as concussions, may result in cumulative brain damage, neurodegeneration and other chronic neurological impairments. There are currently no clinically available treatment options known to prevent these consequences. However, growing evidence implicates neuroinflammation and oxidative stress in the pathogenesis of repetitive mild brain injuries; thus, these may represent potential therapeutic targets.

View Article and Find Full Text PDF

Objective: Evidence from animal and human studies indicates that epilepsy can affect cardiac function, although the molecular basis of this remains poorly understood. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate pacemaker activity and modulate cellular excitability in the brain and heart, with altered expression and function associated with epilepsy and cardiomyopathies. Whether HCN expression is altered in the heart in association with epilepsy has not been investigated previously.

View Article and Find Full Text PDF

The potential role of Nogo-66 Receptor 1 (NgR1) on immune cell phenotypes and their activation during neuroinflammatory diseases such as multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), is unclear. To further understand the function of this receptor on haematopoietically-derived cells, phenotypic and functional analyses were performed using NgR1-deficient (ngr1-/-) animals. Flow cytometry-based phenotypic analyses performed on blood, spleen, thymus, lymph nodes, bone marrow and central nervous-system (CNS)-infiltrating blood cells revealed no immunological defects in naïve ngr1-/- animals versus wild-type littermate (WTLM) controls.

View Article and Find Full Text PDF

Objectives: Due to the high comorbidity of epilepsy and depression, antidepressant treatment is commonly indicated for patients with epilepsy. Studies in humans and animal models suggest that selective serotonin reuptake inhibitors (SSRIs) may reduce seizure frequency and severity, and these drugs are generally considered safe for use in epilepsy. No studies have investigated the effects of SSRIs on epileptogenesis, the neurobiological process underlying the development of the epileptic state.

View Article and Find Full Text PDF

Epilepsy is a chronic brain disorder involving recurring seizures often precipitated by an earlier neuronal insult. The mechanisms that link the transient neuronal insult to the lasting state of epilepsy are unknown. Here we tested the possible role of DNA methylation in mediating long-term induction of epileptiform activity by transient kainic acid exposure using in vitro and in vivo rodent models.

View Article and Find Full Text PDF

Purpose: Ethosuximide (ESX) is a drug of choice for the symptomatic treatment of absence seizures. Chronic treatment with ESX has been reported to have disease-modifying antiepileptogenic activity in the WAG/Rij rat model of genetic generalized epilepsy (GGE) with absence seizures. Here we examined whether chronic treatment with ESX (1) possesses antiepileptogenic effects in the genetic absence epilepsy rats from Strasbourg (GAERS) model of GGE, (2) is associated with a mitigation of behavioral comorbidities, and (3) influences gene expression in the somatosensory cortex region where seizures are thought to originate.

View Article and Find Full Text PDF

Multiple sclerosis involves demyelination and axonal degeneration of the central nervous system. The molecular mechanisms of axonal degeneration are relatively unexplored in both multiple sclerosis and its mouse model, experimental autoimmune encephalomyelitis. We previously reported that targeting the axonal growth inhibitor, Nogo-A, may protect against neurodegeneration in experimental autoimmune encephalomyelitis; however, the mechanism by which this occurs is unclear.

View Article and Find Full Text PDF

Brain and spinal cord injuries present significant therapeutic challenges. The treatments available for these conditions are largely ineffective, partly due to limitations in directly targeting the therapeutic agents to sites of pathology within the central nervous system (CNS). The use of stem cells to treat these conditions presents a novel therapeutic strategy.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a devastating neurological condition that mainly affects young adults and is associated with long-standing morbidity. The pathophysiology of MS is believed to involve immune-mediated multifocal lesions in the CNS that are characterized by inflammation, demyelination, and axonal injury. Most research efforts to date have concentrated on the mechanisms of immune-mediated demyelination, whereas mechanisms of axonal injury, the major determinant of neurological deficits in MS patients, have been elusive beyond observational analyses.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: