Publications by authors named "Ezgi Oner"

Article Synopsis
  • Epithelial ovarian carcinoma (EOC) is a significant health threat for women, being the most deadly gynecological cancer primarily due to late diagnoses and high recurrence rates.
  • Circulating tumor cells (CTCs) are a rare type of cancer cell that spread into the bloodstream and may serve as useful biomarkers for monitoring EOC, as they can be obtained through minimally invasive liquid biopsies.
  • Despite their potential, the unique characteristics of EOC complicate the detection and analysis of CTCs, posing challenges for their use in clinical settings.
View Article and Find Full Text PDF

Circulating tumor cells (CTCs) have potential as diagnostic, prognostic, and predictive biomarkers in solid tumors. Despite Food and Drug Administration (FDA) approval of CTC devices in various cancers, the rarity and heterogeneity of CTCs in lung cancer make them technically challenging to isolate and analyze, hindering their clinical integration. Establishing a consensus through comparative analysis of different CTC systems is warranted.

View Article and Find Full Text PDF

Cancer is still a global health problem. Among cancer types, breast cancer is the most frequently diagnosed one, and it causes a high mortality rate if not diagnosed in the early stages. In our study, imatinib encapsulated, nanosized, neutral/cationic liposome formulations were prepared as theranostic agents for breast cancer.

View Article and Find Full Text PDF

WST-8 (Cell Counting Kit 8; CCK-8) is the last generation tetrazolium-based cell viability assay and has recently been accepted as a validated method for measuring the cell viability of 3D in vitro models. Here, we describe how to form 3D prostate tumor spheroids using the polyHEMA technique, apply drug treatments and WST-8 assay to these spheroids, and calculate their cell viability. The advantages of our protocol are the formation of spheroids without adding extracellular matrix components, and the elimination of the critique handling process needed for transferring spheroids.

View Article and Find Full Text PDF

Background: siRNAs hold a great potential for cancer therapy, however, poor stability in body fluids and low cellular uptake limit their use in the clinic. To enhance the bioavailability of siRNAs in tumors, novel, safe, and effective carriers are needed.

Results: Here, we developed cationic solid lipid nanoparticles (cSLNs) to carry siRNAs targeting EphA2 receptor tyrosine kinase (siEphA2), which is overexpressed in many solid tumors including prostate cancer.

View Article and Find Full Text PDF

We aimed to develop nanostructured lipid carriers (NLCs) displaying similar characteristics - particle size, polydispersity index, and zeta potential - with the model solid lipid nanoparticles (SLNs) for better comparability. By considering the hydrophilic-lipophilic balance values of solid and liquid lipids, five out of six NLCs and eight out of eight cationic NLCs (cNLCs) were successfully prepared with similar characteristics to their precursor SLN and cationic SLNs (cSLNs), respectively. Among cationic formulations, two cSLNs containing different surfactant/co-surfactant concentrations (4% and 8% S/CoS; w/w) and their cNLC versions prepared with Labrafac lipophile WL 1349 (LWL) or Labrafac PG were selected to compare cytotoxicity, stability, and nucleic acid binding ability.

View Article and Find Full Text PDF

Escape from apoptosis, one of the characteristic features of cancer cells, is a case that reduces the therapeutic efficacy of apoptosis-inducing molecules used in the cancer treatment. Stabilization of the P53 protein, which is responsible for the regulation of apoptosis mechanism in the cell, is therefore an important therapeutic goal. Nutlin3a inhibits the degradation of the P53 protein, triggers P53-mediated apoptosis in cancer cells and enhances the effectiveness of chemotherapeutics.

View Article and Find Full Text PDF