Neutrophils play a pivotal role in orchestrating the immune system response to biomaterials, the onset and resolution of chronic inflammation, and macrophage polarization. However, the neutrophil response to biomaterials and the consequent impact on tissue engineering approaches is still scarcely understood. Here, we report an culture model that comprehensively describes the most important neutrophil functions in the light of tissue repair.
View Article and Find Full Text PDFIn this study, three natural biomaterials, Locust bean gum (LBG), Xanthan gum (XG), and Mastic gum (MG), were combined to form cryogel scaffolds. Thermal and chemical characterizations revealed the successful blend formation from LBG-XG (LX) and LBG-XG-MG (LXM) polymers. All blends resulted in macro-porous scaffolds with interconnected pore structures under the size of 400 μm.
View Article and Find Full Text PDFA large variety of approaches have been used to treat large and irregular shaped bone defects with less than optimal success due to material or design issues. In recent years patient specific constructs prepared by additive manufacturing provided a solution to the need for shaping implants to fit irregular defects in the surgery theater. In this study, cylindrical disks of poly(ε-caprolactone) (PCL) were printed by fused deposition modeling and modified with nanohydroxyapatite (HAp) and poly(propylene fumarate) (PPF) to create a mechanically strong implant with well-defined pore size and porosity, controllable surface hydrophilicity (with PPF) and osteoconductivity (with HAp).
View Article and Find Full Text PDFPeripheral nerve gaps exceeding 1 cm require a bridging repair strategy. Clinical feasibility of autogenous nerve grafting is limited by donor site comorbidity. In this study we investigated neuroregenerative efficacy of autogenous vein grafts implanted with tissue fragments from distal nerve in combination with vascular endothelial growth factor (VEGF) or mesenchymal stem cells (MSCs) in repair of rat peripheral nerve defects.
View Article and Find Full Text PDF