Publications by authors named "Ezeddin Mohajerani"

Introduction: The lack of objectivity options for a specific individualized therapy might cause challenges in laser treatment. In other words, we need optimally determined laser parameters for less side effects. Generally, laser treatment procedures seem to be subjective.

View Article and Find Full Text PDF

The cytotoxicity of chemotherapy drugs is a significant challenge in the way of surmounting cancer. Liposomal drug delivery has proven to be efficacious in increasing the function of the drugs. Its potential to accumulate drugs in the target site and enhance the efficiency of anti-cancer agents with lower doses hinders their cytotoxicity on normal healthy cells.

View Article and Find Full Text PDF

Skin cancer is one of the most common types of malignancy worldwide. Human skin naturally contains several endogenous fluorophores, as potential sources can emit inherent fluorescence, called intrinsic autofluorescence (AF). The melanin endogenous fluorophore in the basal cell layer of the epidermis seems to have a strong autofluorescence signal among other ones in the skin.

View Article and Find Full Text PDF

The aim of this study was to investigate the feasibility of optical spectroscopy as a nondestructive approach in monitoring the skin melanoma cancer cell response to treatment. Owing to the growing trend of personalized medicine, monitoring the treatment response individually is particularly crucial for optimizing cancer therapy efficiency. In the past decade, optical sensing, using diffuse reflectance spectroscopy, has been used to improve the identification of cancerous lesions in various organs.

View Article and Find Full Text PDF

To improve our understanding of the chemistry of actinide complexes and to spur their development in the field of actinide markers, two new uranium complexes were synthesized using 8-hydroxyquinoline and 5,7-dichloro-8-hydroxyquinoline. The prepared complexes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, ultraviolet-visible spectroscopy, elemental analysis, and single-crystal X-ray diffraction. The impact of the electron-withdrawing group of the ligand on the photoluminescence spectra of the complexes in solution and in the solid state was scrutinized.

View Article and Find Full Text PDF

This study was conducted to determine the most efficient method to produce vitamin D in mushrooms using UV radiation. For this purpose, mushrooms were irradiated with UV-B and UV-C lamps from their caps, stems, both caps and stems (oblique), and sliced surface at doses of 12.5 kJ m and 3.

View Article and Find Full Text PDF

Photothermal effect in plasmonic nanostructures (thermoplasmonic), as a nanoscale heater, has been widely used in biomedical technology and optoelectronic devices. However, the big challenge in this effect is the quantitative characterization of the delivered heat to the surrounding environment. In this work, a plasmonic metasurface (as a nanoheater), and a Fabry-Perot (FP) cavity including liquid crystal (as a thermometer element) are integrated.

View Article and Find Full Text PDF

Laser hair removal needs an accurate understanding of tissue structure and chromophores content in order to optimize the selection of laser irradiation parameters. None of the optimized laser therapy might lead to side effects in skin tissue such as severe erythema, burn, scar etc. Therefore, guidance by a noninvasive real-time diagnostic method like optical spectroscopy technique is beneficial.

View Article and Find Full Text PDF

Background And Objective: Optical reflectance spectroscopy is a non-invasive technique for optical characterization of biological samples. Any alteration in a cell from normal or carcinogenic causes will change its refractive index. The aim of this study is to develop a computerized program for extraction of a refractive index of normal and cancerous skin cell lines, including melanoma, fibroblast, and adipose cells, using visible near-infrared reflectance spectra and the Kramers-Kronig (K-K) relations.

View Article and Find Full Text PDF

Active plasmonics combined with liquid crystal (LC) has found many applications in nanophotonics. In this Letter, we propose a fast response active plasmonic device based on the interplay of the plasmonic spectrum and Fabry-Perot (FP) modes. The plasmonic spectrum and FP modes are excited in a layer of gold nanoparticle (NP) islands and an LC microcavity, respectively.

View Article and Find Full Text PDF

In this study, three uranium(vi) complexes, [UO2(C15H9O2)2(CH3CH2OH)2]·2CH3CH2OH (1), [U2O4(C15H9O2)2(CH3O)2(CH3OH)2]·2CH3OH (2), and [U2O4(C15H9O2)4(CH3OH)2]·2H2O (3), were prepared by reacting anthracene-9-carboxylic acid with uranyl acetate dihydrate using various ligand to uranyl acetate ratios in different solvents. The infrared and UV-Vis spectra along with elemental and thermal analyses showed the formation of mono- and dinuclear anthracene-9-carboxylate complexes of uranium. A 1 to 3 molar ratio of uranyl acetate to anthracene-9-carboxylic acid in ethanol resulted in the formation of the mononuclear complex 1, whereas a 1 to 2 and 1 to 3 molar ratio of uranyl acetate to anthracene-9-carboxylic acid in methanol produced the dinuclear complexes 2 and 3, respectively.

View Article and Find Full Text PDF

Recently, compression optical clearing (OC) was applied to detect dermal carotenoid using reflection spectroscopy. To enhance the precision and accuracy of reflection spectroscopy to better detect the spectral absorption of beta-carotene inside biological phantom, here, we simultaneously use compression and immersion OC using dimethyl sulfoxide. In addition, we analytically extract the absorption coefficient of beta-carotene using diffuse reflectance spectroscopy (as an analytical OC).

View Article and Find Full Text PDF

In this research, the feasibility of utilizing visible/near-infrared (Vis/NIR) spectroscopy as an optical non-destructive technique combined with both supervised and unsupervised pattern recognition methods was assessed for detection of Ectomyelois ceratoniae, carob moth, infestation in pomegranates during hidden activity of the larvae. To this end, some fruits were artificially contaminated to the carob moth larvae. Vis/NIR spectra of the blank samples and the contaminated pomegranates without and with external visual symptoms of larvae infestation were analyzed one and two weeks after contaminating the samples as three groups of "Healthy", "Unhealthy-A" and "Unhealthy-B", respectively.

View Article and Find Full Text PDF

We investigate dynamic formation of nanosheet charge accumulations by heterointerface engineering in double injection layer (DIL) based organic light emitting diodes (OLEDs). Our experimental results show that the device performance is considerably improved for the DIL device as the result of heterointerface injection layer (HIIL) formation, in comparison to reference devices, namely, the current density is doubled and even quadrupled and the turn-on voltage is favorably halved, to 3.7 V, which is promising for simple small-molecule OLEDs.

View Article and Find Full Text PDF

In contrast to the red electroluminescence emission frequently observed in porphyrins based OLED devices, the present devices exhibit a nearly white emission with greenish yellow, yellowish green and blue green hues in the case of Fe(II)(TCPPBr6) (TCPPBr6 = β-hexabromo-meso-tetrakis-(4-phenyl carboxyl) porphyrinato), Zn(II)(TPPBr6) and Co(II)(TPPBr6), respectively.

View Article and Find Full Text PDF

The feasibility of using visible/near-infrared (Vis/NIR) spectroscopy was assessed for non-destructive detection of diazinon residues in intact cucumbers. Vis/NIR spectra of diazinon solution and cucumber samples without and with different concentrations of diazinon residue were analysed at the range of 450-1000 nm. Partial least squares-discriminant analysis (PLS-DA) models were developed based on different spectral pre-processing techniques to classify cucumbers with contents of diazinon below and above the MRL as safe and unsafe samples, respectively.

View Article and Find Full Text PDF

We have synthesized five novel Ru(ii) phenanthroline complexes with an additional aryl sulfonate ligating substituent at the 5-position [Ru(L)(bpy)2](BF4)2 (1), [Ru(L)(bpy)(SCN)2] (2), [Ru(L)3](BF4)2 (3), [Ru(L)2(bpy)](BF4)2 (4) and [Ru(L)(BPhen)(SCN)2] (5) (where L = 6-one-[1,10]phenanthroline-5-ylamino)-3-hydroxynaphthalene 1-sulfonic, bpy = 2,2'-bipyridine, BPhen = 4,7-diphenyl-1,10-phenanthroline), as both photosensitizers for oxide semiconductor solar cells (DSSCs) and light emitting diodes (LEDs). The absorption and emission maxima of these complexes red shifted upon extending the conjugation of the phenanthroline ligand. Ru phenanthroline complexes exhibit broad metal to ligand charge transfer-centered electroluminescence (EL) with a maximum near 580 nm.

View Article and Find Full Text PDF

Laser-tissue interaction is of great interest due to its significant application in biomedical optics in both diagnostic and treatment purposes. Major aspects of the laser-tissue interaction which has to be considered in biomedical studies are the thermal properties of the tissue and the thermal changes caused by the interaction of light and tissue. In this review paper the effects of light on the tissue at different temperatures are discussed.

View Article and Find Full Text PDF

The reactions of a zirconium salt with 1,2,4,5-benzenetetracarboxylate (btec), bathophenanthroline (Bphen) and thiocyanate ions were synthesized and studied by changing the mole ratio, the order of reactant and their pH. It is found that the coordination mode of btec acid depends on the control of reaction conditions. Monodentate, bidentate and bridging modes were investigated by FT-IR spectroscopy.

View Article and Find Full Text PDF

Diffuse optical tomography (DOT) is an emerging oncological imaging modality that is based on a near-infrared optical technique. DOT provides the spatial volume and depth of tumors by determination of optical properties of biological tissues, such as the absorption and scattering coefficients. During a DOT, the optical fibers are kept in contact with biological tissues that introduce a certain amount of pressure on the local biological tissue.

View Article and Find Full Text PDF

A series of 8-hydroxyquinoline complexes of tin, Q(2)SnCl(2) (Q = 2-methyl-8-hydroxyquinoline, 8-hydroxyquinoline, 5,7-dibromo-8-hydroxyquinoline, 5-chloro-8-hydroxyquinoline, 5,7-dichloro-8-hydroxyquinoline and 5-nitro-8-hydroxyquinoline) were prepared by reacting stannous dichloride with 8-hydroxyquinoline and its derivatives. All complexes were characterized by elemental analysis, mass spectrometry and infrared, UV-vis and (1)H NMR spectroscopes. Furthermore, the molecular structure of a representative complex, dichlorido-bis(5-nitro-quinolin-8-olato-2N,O)tin(IV), was determined by single-crystal X-ray diffraction.

View Article and Find Full Text PDF

This work characterizes holographic polymer dispersed liquid crystals (HPDLC) composite material based on a new monomer, urethane trimethacrylate, by fabricating switchable diffraction grating. The highest diffraction efficiency achieved was 90.3%.

View Article and Find Full Text PDF

Fabrication of an all-optical switchable holographic liquid crystal (LC) Fresnel lens based on azo-dye-doped polymer-dispersed LCs is reported using a Michelson interferometer. It is found that, upon circularly polarized photoirradiation, the diffraction efficiency of the fabricated Fresnel lens was increased significantly in a reversible manner. We believe this is due to the anisotropy induced by reorientation of the LC molecules coupled with azo-dye molecule orientation due to trans-cis-trans photoisomerization, which modulates the refractive index of the LC-rich regions.

View Article and Find Full Text PDF

A holographic technique for fabricating an electrically switchable liquid crystal/polymer composite Fresnel lens is reported. A Michelson interferometer is used to produce the required Fresnel pattern, by placing a convex lens into one path of the interferometer. Simplicity of the method and the possibility of fabricating different focal length lenses in a single arrangement are advantages of the method.

View Article and Find Full Text PDF

An amplified cholesteric liquid crystal (CLC) laser performance is demonstrated by utilizing a binary-dye mixture (with 62 wt% DCM and 38 wt% PM597) as the active medium and an external stable resonator. The measured results show that the laser efficiency is enhanced as compared to the highest efficiency of each individual dye. Furthermore, using such an active CLC in an external stable resonator leads to a approximately 92X improved efficiency over the single CLC laser.

View Article and Find Full Text PDF