Publications by authors named "Ezdihar Hassoun"

To assess the developmental toxicity of trichloroacetate (TCA), zebrafish embryos were exposed to 8 to 48 mM of TCA and evaluated for developmental milestones from 8- to 144-hour postfertilization (hpf). All developmental toxicities are reported in this paper. Embryos were found to have developed edema in response to 16 to 48 mM of TCA exposure at 32- to 80-hpf, experienced delay in hatching success in response to 24 to 48 mM at 80-hpf.

View Article and Find Full Text PDF

The brominated and mixed bromo-chloro-haloacetates, such as dibromoacetate (DBA), bromochloroacetate (BCA), and bromodichloroacetate (BDCA), are by-products of water chlorination and are found at lower levels than the fully chlorinated acetates in the drinking water. The toxicities of the compounds were assessed in J774A.1 cells and were found to induce concentration-dependent increases in cell death and superoxide anion and protein carbonyl compounds production.

View Article and Find Full Text PDF

Zebrafish has in recent years emerged as a popular vertebrate model for use in pharmacological and toxicological studies. While there have been sporadic studies on the zebrafish glutathione S-transferases (GSTs), the zebrafish GST gene superfamily still awaits to be fully elucidated. We report here the identification of 15 zebrafish cytosolic GST genes in NCBI GenBank database and the expression, purification, and enzymatic characterization of the zebrafish cytosolic GST Pi-1 (GSTP1).

View Article and Find Full Text PDF

The toxicity of the drinking water disinfection by products dichloroacetate (DCA) and trichloroacetate (TCA) was studied in the alpha mouse liver (AML12) cells at concentrations ranging between 770 and 4100 ppm and at incubation times ranging from 24 to 72 h. Cellular viability, superoxide anion (SA) and lipid peroxidation (LP) production, as well as superoxide dismutase (SOD) activity were determined. DCA and TCA resulted in time- and concentration-dependent decreases in cellular viability, and also in significant increases in SA and LP production, and in SOD activity at specific concentrations and time points.

View Article and Find Full Text PDF

Dichloroacetate (DCA) and trichloroacetate (TCA) are water chlorination byproducts, and their mixtures were previously found to induce additive to greater than additive effects on hepatic oxidative stress (OS) induction in mice after subchronic exposure. To investigate the roles of antioxidant enzymes and glutathione (GSH) in those effects, livers of B6C3F1 mice treated by gavage with 7.5, 15, or 30 mg DCA/kg/day, 12.

View Article and Find Full Text PDF

Dichloroacetate (DCA) and trichloroacetate (TCA) are drinking-water chlorination by-products previously found to induce oxidative stress (OS) in hepatic tissues of B6C3F1 male mice. To assess the effects of mixtures of the compounds on OS, groups of male B6C3F1 mice were treated daily by gavage with DCA at doses of 7.5, 15, or 30 mg/kg/d, TCA at doses of 12.

View Article and Find Full Text PDF

In this study, groups of B6C3F1 male mice were treated with dichloroacetate (DCA), trichloroacetate (TCA), and mixtures of the compounds (Mix I, II, and III) daily by gavage, for 13 weeks. The tested doses were 7.5, 15, and 30 mg DCA/kg/day and 12.

View Article and Find Full Text PDF

Groups of mice were fed either a standard (Std) diet or a diet not supplemented with vitamin E (Low-E) and were divided into three subgroups that were treated subchronically by gavage, with water (control), dichloroacetate (DCA), or trichloroacetate (TCA). The livers of the animals were assayed for various biomarkers of oxidative stress (OS), antioxidant enzyme activities, and total glutathione (GSH). In general, livers from the low-E diet group expressed lower levels of biomarkers of OS associated with greater increases in various antioxidant enzymes activities and GSH when compared with the corresponding treatments in the Std diet group.

View Article and Find Full Text PDF

The effects of a vitamin E-restricted diet on the induction of phagocytic activation by dichloroacetate (DCA) and trichloroacetate (TCA) was investigated. Groups of B6C3F1 male mice were either kept on standard diet (Std diet group) or diet that had the vitamin provided only by its natural ingredients (Low-E diet group). The animals in each diet group were administered 77 mg of DCA or TCA/ kg/day, or 5 ml/kg water (controls), by gavage, for 13 weeks.

View Article and Find Full Text PDF

Dichloroacetate (DCA) and trichloroacetate (TCA) were previously found to induce various levels of oxidative stress in the hepatic tissues of mice after subacute and subchronic exposure. The cells are known to have several protective mechansims against production of oxidative stress by different xenobiotics. To assess the roles of the antioxidant enzymes and glutathione (GSH) in DCA- and TCA-induced oxidative stress, groups of B6C3F1 mice were administered either DCA or TCA at doses of 7.

View Article and Find Full Text PDF

The induction of phagocytic activation in response to prolonged treatment with different doses of dichloroacetate (DCA) and trichloroacetate (TCA) has been investigated in mice. Groups of B6C3F1 male mice were administered 7.7, 77, 154, and 410 mg of DCA or TCA/kg/day, postorally, for 4- and 13-weeks.

View Article and Find Full Text PDF

Dichoroacetate (DCA) and trichloroacetate (TCA) were found to be hepatotoxic and hepatocarcinogenic in rodents. To investigate the role of oxidative stress in the long-term hepatotoxicity of the compounds, groups of mice were administered 7.7, 77, 154 and 410 mg kg(-1) per day, of either DCA or TCA, by gavage, for 4 weeks (4-W) and 13 weeks (13-W), and superoxide anion (SA), lipid peroxidation (LP) and DNA-single strand breaks (SSBs) were determined in the hepatic tissues.

View Article and Find Full Text PDF

The abilities of various doses of 3,3',4,4',5-pentachlorobiphenyl (PCB126) to induce changes in antioxidant enzyme activities and glutathione levels in the brain tissues of rats were examined in rats after subchronic exposure. Groups of rats were administered 10,30, 100, 300, 550 or 1000 ng PCB 126/kg/day, p.o.

View Article and Find Full Text PDF

Dichloroacetate (DCA) is used for different medical and industrial purposes and has been found to be a toxic by-product produced during the process of water chlorination. The DCA effects on superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities and glutathione (GSH) level were assessed and correlated with each other and also with cellular viabilities in J774A.1 macrophage cells.

View Article and Find Full Text PDF

Dichoroacetate (DCA) and trichloroacetate (TCA) are by-products formed during chlorination of the drinking water and were found to be hepatotoxic and hepatocarcinogenic in rodents. In this study, the abilities of the compounds to induce oxidative stress and phagocytic activation have been studied in B6C3F1 mice. Groups of mice were administered 300 mg/kg of either DCA or TCA, p.

View Article and Find Full Text PDF

The effects of TCDD on the distribution of biogenic amines and production of superoxide anion (SA) in different brain regions of rats have been studied after subchronic exposure. Groups of females Sprague-Dawley rats were administered daily dose of 46ng TCDD/(kgday) (treated groups), or the vehicle used to dissolve TCDD (control group), for 90 days. The rats were sacrificed at the end of the exposure period and their brains were dissected into different regions including, hippocampus (H), cerebral cortex (Cc), cerebellum (C), and brain stem (Bs).

View Article and Find Full Text PDF

The ability of ellagic acid (EA) to modulate dichloroacetic acid (DCA)-induced developmental toxicity and oxidative damage was examined in zebrafish embryos. Embryos were exposed to 20 mM EA administered concomitantly with 32 mM DCA at 4 hours postfertilization (hpf) and 20 h later. Embryos were observed through 144 hpf for developmental malformations, and production of superoxide anion (SA) and nitric oxide (NO) was determined in embryonic homogenates.

View Article and Find Full Text PDF

Ellagic acid (EA) and vitamin E succinate (VES) were previously shown to protect against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)-induced reactive oxygen species (ROS) overproduction in certain brain regions of rats after subchronic exposure. The current study was designed to assess the modulation of antioxidant enzyme activities and glutathione (GSH) levels as protective measures for VES and EA against TCDD-induced ROS overproduction in four regions of rat brain. TCDD was administered to groups of rats at a daily dose of 46 ng/kg for 90 d.

View Article and Find Full Text PDF

Dichloroacetate (DCA) is one of the toxic by products that are formed during the chlorine disinfection process of drinking water. In this study, the developmental toxicity of DCA has been determined in zebrafish (Danio rerio) embryos. Embryos were exposed to different concentrations (4, 8, 16, and 32 mM) of the compound at the 4 h postfertilization (hpf) stage of development, and were observed for different developmental toxic effects at 8, 24, 32, 55, 80, and 144 hpf.

View Article and Find Full Text PDF

The effects of ellagic acid (EA) and vitamin E succinate (VES) on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced oxidative stress in different brain regions of rats have been studied after subchronic exposure to the compounds. TCDD was administered to groups of rats at a dose of 46 ng/kg/day for 90 days. EA and VES were administered to groups of rats, either separately or simultaneously with TCDD, every other day for 90 days.

View Article and Find Full Text PDF

Dichloroacetate (DCA) and trichloroacetate (TCA) are by-products that are formed during the process of water chlorination and have been previously shown to induce superoxide anion (SA) production and cellular death when added to J774.A1 macrophage cultures. In this study, the effects of superoxide dismutase (SOD) and polyclonal tumor necrosis factor-alpha (TNF-alpha) antibodies on DCA- and TCA-induced SA production and cellular death have been tested on the J774.

View Article and Find Full Text PDF

The protective effect of vitamin A and vitamin E succinate against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced acute toxicity and measures of oxidative stress was studied. Ten mice were treated with either vitamin A (50 mg/kg every other day for eight days) or vitamin E succiante (150 mg/kg/day followed by a dose of 40 mg/kg/day for five additional days). Half of each of the above groups of animals received TCDD on day 4.

View Article and Find Full Text PDF

The induction of oxidative stress by TCDD in various brain regions of rats has been investigated after subchronic exposure. TCDD was administered by gavage to female Sprague-Dawley rats at daily doses of 0, 10, 22, and 46 ng/kg for 13 weeks. The brains were dissected to cerebral cortex (Cc), hippocampus (H), cerebellum (C), and brain stem (Bs); the production of superoxide anion (SA) and lipid peroxides and the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) were determined in those regions.

View Article and Find Full Text PDF

The in vitro toxicity of the drinking water disinfection by products dichloroacetate (DCA) and trichloroacetate (TCA) were studied using the J774A.1 macrophage cell line. DCA and TCA were added to cell cultures at concentrations ranging between 8-32 mM and incubated for 24, 36 and 60 h.

View Article and Find Full Text PDF

The abilities of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), 3,3',4,4',5-pentachlorobiphenyl (PCB126), and mixtures of these xenobiotics (toxic equivalents, TEQs) to induce oxidative stress in hepatic and brain tissues of rats have been investigated after chronic (30 wk) exposure to these congeners. TCDD, PeCDF, PCB126, and TEQs were administered daily to groups of rats at doses that corresponded to their toxic equivalency factors (TEFs), and the biomarkers of oxidative stress, including the production of superoxide anion, lipid peroxidation, and DNA single-strand breaks (SSBs), were determined in hepatic and brain tissues at the end of the exposure period. The three chemicals caused similar dose-dependent increases in the production of superoxide anion, lipid peroxidation, and DNA SSBs, which plateaued at certain dose ranges, followed by secondary increases at the higher dose levels.

View Article and Find Full Text PDF